Udostępnij za pośrednictwem


NormalizationCatalog.NormalizeSupervisedBinning Metoda

Definicja

Przeciążenia

NormalizeSupervisedBinning(TransformsCatalog, InputOutputColumnPair[], String, Int64, Boolean, Int32, Int32)

Utwórz element NormalizingEstimator, który normalizuje się, przypisując dane do pojemników na podstawie korelacji z kolumną labelColumnName .

NormalizeSupervisedBinning(TransformsCatalog, String, String, String, Int64, Boolean, Int32, Int32)

Utwórz element NormalizingEstimator, który normalizuje się, przypisując dane do pojemników na podstawie korelacji z kolumną labelColumnName .

NormalizeSupervisedBinning(TransformsCatalog, InputOutputColumnPair[], String, Int64, Boolean, Int32, Int32)

Utwórz element NormalizingEstimator, który normalizuje się, przypisując dane do pojemników na podstawie korelacji z kolumną labelColumnName .

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);
static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator

Parametry

catalog
TransformsCatalog

Wykaz przekształceń

columns
InputOutputColumnPair[]

Pary kolumn wejściowych i wyjściowych. Kolumny wejściowe muszą być typu Singledanych lub Double znanym wektorem tych typów. Typ danych dla kolumny wyjściowej będzie taki sam jak skojarzona kolumna wejściowa.

labelColumnName
String

Nazwa kolumny etykiety dla nadzorowanego kwantowania.

maximumExampleCount
Int64

Maksymalna liczba przykładów używanych do trenowania normalizacji.

fixZero
Boolean

Czy mapować zero na zero, zachowując rozrzedy.

maximumBinCount
Int32

Maksymalna liczba pojemników (zalecana moc wynosi 2).

mininimumExamplesPerBin
Int32

Minimalna liczba przykładów na przedział.

Zwraca

Dotyczy

NormalizeSupervisedBinning(TransformsCatalog, String, String, String, Int64, Boolean, Int32, Int32)

Utwórz element NormalizingEstimator, który normalizuje się, przypisując dane do pojemników na podstawie korelacji z kolumną labelColumnName .

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeSupervisedBinning (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, string labelColumnName = "Label", long maximumExampleCount = 1000000000, bool fixZero = true, int maximumBinCount = 1024, int mininimumExamplesPerBin = 10);
static member NormalizeSupervisedBinning : Microsoft.ML.TransformsCatalog * string * string * string * int64 * bool * int * int -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeSupervisedBinning (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional labelColumnName As String = "Label", Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional maximumBinCount As Integer = 1024, Optional mininimumExamplesPerBin As Integer = 10) As NormalizingEstimator

Parametry

catalog
TransformsCatalog

Wykaz przekształceń

outputColumnName
String

Nazwa kolumny wynikającej z przekształcenia elementu inputColumnName. Typ danych w tej kolumnie jest taki sam jak kolumna wejściowa.

inputColumnName
String

Nazwa kolumny do przekształcenia. W przypadku ustawienia wartości nullwartość parametru outputColumnName będzie używana jako źródło. Typ danych w tej kolumnie powinien być Singlelub Double znanym wektorem tego typu.

labelColumnName
String

Nazwa kolumny etykiety dla nadzorowanego kwantowania.

maximumExampleCount
Int64

Maksymalna liczba przykładów używanych do trenowania normalizacji.

fixZero
Boolean

Czy mapować zero na zero, zachowując rozrzedy.

maximumBinCount
Int32

Maksymalna liczba pojemników (zalecana moc wynosi 2).

mininimumExamplesPerBin
Int32

Minimalna liczba przykładów na przedział.

Zwraca

Przykłady

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeSupervisedBinning
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Bin ="Bin1" },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
                    Bin ="Bin3" },

                new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
                    Bin ="Bin3" }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // Let's transform "Bin" column from string to key.
            data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
                .Transform(data);
            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong.
            var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: false);

            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong but make sure zero values would
            // remain zero after normalization. Helps preserve sparsity.
            var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.5000, 1.0000, 0.0000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.0000, 0.0000, 0.0000, 1.0000
            //  0.0000, 0.0000, 0.0000, 1.0000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
                .ToArray();

            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.0000, 1.0000, 0.0000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.0000,-0.5000, 0.0000, 1.0000
            //  0.0000,-0.5000, 0.0000, 1.0000

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of
            // InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as BinNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
                ") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
                .Offset[0]));

            Console.WriteLine("Where Index(x) is the index of the bin to which " +
                "x belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                transformParams.UpperBounds[0]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: 4.5 7 ∞

            var fixZeroParams = normalizeFixZeroTransform
                .GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
                ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
                ") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
                .Offset[1]));

            Console.WriteLine("Where Index(x) is the index of the bin to which x " +
                "belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                fixZeroParams.UpperBounds[1]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0.5
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: -2 1.5 ∞
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public string Bin { get; set; }
        }
    }
}

Dotyczy