NormalizationCatalog.NormalizeGlobalContrast Metoda
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Utwórz obiekt GlobalContrastNormalizingEstimator, który normalizuje kolumny indywidualnie stosując normalizację kontrastu globalnego.
Ustawienie ensureZeroMean
wartości true
spowoduje zastosowanie kroku przetwarzania wstępnego w celu ustawienia średniej określonej kolumny jako wektora zerowego.
public static Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator NormalizeGlobalContrast (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, bool ensureZeroMean = true, bool ensureUnitStandardDeviation = false, float scale = 1);
static member NormalizeGlobalContrast : Microsoft.ML.TransformsCatalog * string * string * bool * bool * single -> Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator
<Extension()>
Public Function NormalizeGlobalContrast (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional ensureZeroMean As Boolean = true, Optional ensureUnitStandardDeviation As Boolean = false, Optional scale As Single = 1) As GlobalContrastNormalizingEstimator
Parametry
- catalog
- TransformsCatalog
Wykaz przekształcenia.
- outputColumnName
- String
Nazwa kolumny wynikającej z przekształcenia elementu inputColumnName
.
Typ danych tej kolumny będzie taki sam jak typ danych kolumny wejściowej.
- inputColumnName
- String
Nazwa kolumny do normalizacji. W przypadku ustawienia wartości null
wartość parametru outputColumnName
będzie używana jako źródło.
Ten narzędzie do szacowania działa na znanych wektorach o rozmiarze Single.
- ensureZeroMean
- Boolean
Jeśli true
, odejmij od każdej wartości przed normalizacją i użyj nieprzetworzonych danych wejściowych.
- ensureUnitStandardDeviation
- Boolean
W przypadku true
, wynikowe odchylenie standardowe wektora będzie jedno.
W przeciwnym razie wynikowa wektor L2-norma byłaby jedna.
- scale
- Single
Skaluj funkcje według tej wartości.
Zwraca
Przykłady
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class NormalizeGlobalContrast
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 1, 1, 0, 0} },
new DataPoint(){ Features = new float[4] { 2, 2, 0, 0} },
new DataPoint(){ Features = new float[4] { 1, 0, 1, 0} },
new DataPoint(){ Features = new float[4] { 0, 1, 0, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
var approximation = mlContext.Transforms.NormalizeGlobalContrast(
"Features", ensureZeroMean: false, scale: 2,
ensureUnitStandardDeviation: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = approximation.Fit(data);
var transformedData = tansformer.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 2.0000, 2.0000,-2.0000,-2.0000
// 2.0000, 2.0000,-2.0000,-2.0000
// 2.0000,-2.0000, 2.0000,-2.0000
//- 2.0000, 2.0000,-2.0000, 2.0000
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}