LearningPipelineExtensions.WithOnFitDelegate<TTransformer> Metoda
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Biorąc pod uwagę narzędzie do szacowania, zwróć obiekt opakowujący, który będzie wywoływać delegata po Fit(IDataView) wywołaniu. Często ważne jest, aby narzędzie do szacowania zwracało informacje o tym, co było odpowiednie, dlatego Fit(IDataView) metoda zwraca specjalnie wpisany obiekt, a nie tylko ogólny ITransformerelement . Jednak w tym samym czasie IEstimator<TTransformer> są często tworzone w potoki z wieloma obiektami, więc może być konieczne utworzenie łańcucha narzędzi do szacowania, za pośrednictwem EstimatorChain<TLastTransformer> którego narzędzie do szacowania, dla którego chcemy uzyskać transformator jest pochowany gdzieś w tym łańcuchu. W tym scenariuszu możemy za pomocą tej metody dołączyć delegata, który zostanie wywołany po wywołaniu dopasowania.
public static Microsoft.ML.IEstimator<TTransformer> WithOnFitDelegate<TTransformer> (this Microsoft.ML.IEstimator<TTransformer> estimator, Action<TTransformer> onFit) where TTransformer : class, Microsoft.ML.ITransformer;
static member WithOnFitDelegate : Microsoft.ML.IEstimator<'ransformer (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)> * Action<'ransformer (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)> -> Microsoft.ML.IEstimator<'ransformer (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)> (requires 'ransformer : null and 'ransformer :> Microsoft.ML.ITransformer)
<Extension()>
Public Function WithOnFitDelegate(Of TTransformer As {Class, ITransformer}) (estimator As IEstimator(Of TTransformer), onFit As Action(Of TTransformer)) As IEstimator(Of TTransformer)
Parametry typu
- TTransformer
Typ ITransformer zwracany przez estimator
Parametry
- estimator
- IEstimator<TTransformer>
Narzędzie do szacowania do opakowania
- onFit
- Action<TTransformer>
Delegat, który jest wywoływany z wynikowymi TTransformer
wystąpieniami, jest wywoływany.Fit(IDataView) Ponieważ Fit(IDataView) może być wywoływany wiele razy, ten delegat może być również wywoływany wiele razy.
Zwraca
Narzędzie do szacowania opakowującego, który wywołuje wskazanego delegata przy każdym wywołaniu dopasowania
Przykłady
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class WithOnFitDelegate
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
Label = true },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
Label = true },
new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
Label = false },
new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
Label = false }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// Create a pipeline to normalize the features and train a binary
// classifier. We use WithOnFitDelegate for the intermediate binning
// normalization step, so that we can inspect the properties of the
// normalizer after fitting.
NormalizingTransformer binningTransformer = null;
var pipeline =
mlContext.Transforms
.NormalizeBinning("Features", maximumBinCount: 3)
.WithOnFitDelegate(
fittedTransformer => binningTransformer = fittedTransformer)
.Append(mlContext.BinaryClassification.Trainers
.LbfgsLogisticRegression());
Console.WriteLine(binningTransformer == null);
// Expected Output:
// True
var model = pipeline.Fit(data);
// During fitting binningTransformer will get assigned a new value
Console.WriteLine(binningTransformer == null);
// Expected Output:
// False
// Inspect some of the properties of the binning transformer
var binningParam = binningTransformer.GetNormalizerModelParameters(0) as
BinNormalizerModelParameters<ImmutableArray<float>>;
for (int i = 0; i < binningParam.UpperBounds.Length; i++)
{
var upperBounds = string.Join(", ", binningParam.UpperBounds[i]);
Console.WriteLine(
$"Bin {i}: Density = {binningParam.Density[i]}, " +
$"Upper-bounds = {upperBounds}");
}
// Expected output:
// Bin 0: Density = 2, Upper-bounds = 3, 7, Infinity
// Bin 1: Density = 2, Upper-bounds = -0.5, 1.5, Infinity
// Bin 2: Density = 2, Upper-bounds = 0, 2.5, Infinity
// Bin 3: Density = 1, Upper-bounds = 0.5, Infinity
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
public bool Label { get; set; }
}
}
}