cauchy_distribution — Klasa
Generuje rozkład Cauchy.
Składnia
template<class RealType = double>
class cauchy_distribution {
public:
// types
typedef RealType result_type;
struct param_type;
// constructor and reset functions
explicit cauchy_distribution(result_type a = 0.0, result_type b = 1.0);
explicit cauchy_distribution(const param_type& parm);
void reset();
// generating functions
template <class URNG>
result_type operator()(URNG& gen);
template <class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parametry
Typ rzeczywisty
Typ wyniku zmiennoprzecinkowego domyślnie to double
. Aby uzyskać informacje o możliwych typach, zobacz losowe>.<
URNG
Jednolity silnik generatora liczb losowych. Aby uzyskać informacje o możliwych typach, zobacz losowe>.<
Uwagi
Szablon klasy opisuje dystrybucję, która generuje wartości typu zmiennoprzecinkowego określonego przez użytkownika lub typ double
, jeśli nie jest podany, dystrybuowany zgodnie z rozkładem Cauchy. Poniższa tabela zawiera linki do artykułów dotyczących poszczególnych członków.
cauchy_distribution
param_type
Funkcje a()
właściwości i b()
zwracają odpowiednie wartości dla przechowywanych parametrów a
dystrybucji i b
.
Składowa param()
właściwości ustawia lub zwraca przechowywany pakiet parametrów param_type
dystrybucji.
Funkcje min()
składowe i max()
zwracają najmniejszy możliwy wynik i największy możliwy wynik, odpowiednio.
reset()
Funkcja składowa odrzuca wszystkie buforowane wartości, dzięki czemu wynik następnego wywołania operator()
nie zależy od żadnych wartości uzyskanych z aparatu przed wywołaniem.
operator()
Funkcje składowe zwracają następną wygenerowaną wartość na podstawie aparatu URNG z bieżącego pakietu parametrów lub określonego pakietu parametrów.
Aby uzyskać więcej informacji na temat klas dystrybucji i ich składowych, zobacz losowe>.<
Aby uzyskać szczegółowe informacje o dystrybucji cauchy, zobacz Wolfram MathWorld artykuł Cauchy Distribution.
Przykład
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double a, const double b, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::cauchy_distribution<> distr(a, b);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "a() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.a() << std::endl;
std::cout << "b() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.b() << std::endl;
// generate the distribution as a histogram
std::map<double, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
int counter = 0;
for (const auto& elem : histogram) {
std::cout << std::fixed << std::setw(11) << ++counter << ": "
<< std::setw(14) << std::setprecision(10) << elem.first << std::endl;
}
std::cout << std::endl;
}
int main()
{
double a_dist = 0.0;
double b_dist = 1;
int samples = 10;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the 'a' distribution parameter: ";
std::cin >> a_dist;
std::cout << "Enter a floating point value for the 'b' distribution parameter (must be greater than zero): ";
std::cin >> b_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(a_dist, b_dist, samples);
}
Pierwszy przebieg:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 1.0000000000
Distribution for 10 samples:
1: -3.4650392984
2: -2.6369564174
3: -0.0786978867
4: -0.0609632093
5: 0.0589387400
6: 0.0589539764
7: 0.1004592006
8: 1.0965724260
9: 1.4389408122
10: 2.5253154706
Drugi przebieg:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 10
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 10.0000000000
Distribution for 10 samples:
1: -34.6503929840
2: -26.3695641736
3: -0.7869788674
4: -0.6096320926
5: 0.5893873999
6: 0.5895397637
7: 1.0045920062
8: 10.9657242597
9: 14.3894081218
10: 25.2531547063
Trzeci przebieg:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 10
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 10
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 10.0000000000
b() == 10.0000000000
Distribution for 10 samples:
1: -24.6503929840
2: -16.3695641736
3: 9.2130211326
4: 9.3903679074
5: 10.5893873999
6: 10.5895397637
7: 11.0045920062
8: 20.9657242597
9: 24.3894081218
10: 35.2531547063
Wymagania
Nagłówek:<losowy>
Przestrzeń nazw: std
cauchy_distribution::cauchy_distribution
Tworzy rozkład.
explicit cauchy_distribution(result_type a = 0.0, result_type b = 1.0);
explicit cauchy_distribution(const param_type& parm);
Parametry
a
a
Parametr dystrybucji.
b
b
Parametr dystrybucji.
parm
Struktura param_type
używana do konstruowania rozkładu.
Uwagi
Warunek wstępny: 0.0 < b
Pierwszy konstruktor tworzy obiekt, którego przechowywana a
wartość zawiera wartość a , której przechowywana b
wartość zawiera wartość b.
Drugi konstruktor tworzy obiekt, którego przechowywane parametry są inicjowane z parm. Bieżące parametry istniejącej dystrybucji można uzyskać i ustawić, wywołując funkcję składową param()
.
cauchy_distribution::p aram_type
Przechowuje wszystkie parametry dystrybucji.
struct param_type {
typedef cauchy_distribution<result_type> distribution_type;
param_type(result_type a = 0.0, result_type b = 1.0);
result_type a() const;
result_type b() const;
bool operator==(const param_type& right) const;
bool operator!=(const param_type& right) const;
};
Parametry
a
a
Parametr dystrybucji.
b
b
Parametr dystrybucji.
Prawy
Obiekt param_type
, który ma być porównywany z tym obiektem.
Uwagi
Warunek wstępny: 0.0 < b
Tę strukturę można przekazać do konstruktora klasy rozkładu podczas tworzenia wystąpienia, do param()
funkcji składowej w celu ustawienia przechowywanych parametrów istniejącej dystrybucji i operator()
do użycia zamiast przechowywanych parametrów.