Databricks Runtime 10.5 for Machine Learning (EoS)
Uwaga
Obsługa tej wersji środowiska Databricks Runtime została zakończona. Aby uzyskać datę zakończenia pomocy technicznej, zobacz Historia zakończenia pomocy technicznej. Wszystkie obsługiwane wersje środowiska Databricks Runtime można znaleźć w temacie Databricks Runtime release notes versions and compatibility (Wersje i zgodność środowiska Databricks Runtime).
Środowisko Databricks Runtime 10.5 for Machine Learning zapewnia gotowe do użycia środowisko do uczenia maszynowego i nauki o danych oparte na środowisku Databricks Runtime 10.5 (EoS). Środowisko Databricks Runtime ML zawiera wiele popularnych bibliotek uczenia maszynowego, w tym TensorFlow, PyTorch i XGBoost. Środowisko Databricks Runtime ML obejmuje rozwiązanie AutoML— narzędzie do automatycznego trenowania potoków uczenia maszynowego. Środowisko Databricks Runtime ML obsługuje również trenowanie rozproszonego uczenia głębokiego przy użyciu struktury Horovod.
Aby uzyskać więcej informacji, w tym instrukcje dotyczące tworzenia klastra uczenia maszynowego usługi Databricks Runtime, zobacz Sztuczna inteligencja i uczenie maszynowe w usłudze Databricks.
Nowe funkcje i ulepszenia
Środowisko Databricks Runtime 10.5 ML jest oparte na środowisku Databricks Runtime 10.5. Aby uzyskać informacje na temat nowości w środowisku Databricks Runtime 10.5, w tym apache Spark MLlib i SparkR, zobacz informacje o wersji środowiska Databricks Runtime 10.5 (EoS).
Ulepszenia rozwiązania AutoML
Następujące ulepszenia zostały wprowadzone do rozwiązania AutoML.
- Ulepszone użycie pamięci umożliwia automatyczne uczenie maszyn wirtualnych na większych zestawach danych.
- Dzięki prognozowaniu automatycznego uczenia maszynowego można teraz wyeksportować najlepsze przewidywania modelu do tabeli przy użyciu interfejsu API. Jeśli
output_database
zostanie podana, rozwiązanie AutoML zapisuje przewidywania najlepszego modelu w nowej tabeli w określonej bazie danych. Przewidywania nie są zapisywane, jeślioutput_database
nie zostaną określone.
Ulepszenia magazynu funkcji usługi Databricks
Następujące ulepszenia zostały wprowadzone w usłudze Databricks Feature Store.
- Teraz możesz usunąć istniejącą tabelę funkcji za pomocą interfejsu
drop_table
API. Ta akcja powoduje również porzucenie bazowej tabeli delty. - Teraz możesz użyć interfejsu API języka Python inżynierii funkcji i obszaru roboczego, aby dodać tag do tabeli funkcji podczas tworzenia lub rejestrowania oraz dodawać, aktualizować, usuwać lub odczytywać tagi w istniejących tabelach funkcji.
Środowisko systemu
Środowisko systemowe w środowisku Databricks Runtime 10.5 ML różni się od środowiska Databricks Runtime 10.5 w następujący sposób:
- DBUtils: Środowisko uruchomieniowe Databricks Runtime ML nie zawiera narzędzia biblioteki (dbutils.library) (starsza wersja).
Zamiast tego użyj
%pip
poleceń. Zobacz Biblioteki języka Python o zakresie notesu. - W przypadku klastrów gpu środowisko Databricks Runtime ML obejmuje następujące biblioteki procesora GPU FIRMY NVIDIA:
- CUDA 11.0
- cuDNN 8.0.5.39
- NCCL 2.10.3
- TensorRT 7.2.2
Biblioteki
W poniższych sekcjach wymieniono biblioteki zawarte w środowisku Databricks Runtime 10.5 ML, które różnią się od bibliotek zawartych w środowisku Databricks Runtime 10.5.
W tej sekcji:
- Biblioteki najwyższego poziomu
- Biblioteki języka Python
- Biblioteki języka R
- Biblioteki Java i Scala (klaster Scala 2.12)
Biblioteki najwyższego poziomu
Środowisko Databricks Runtime 10.5 ML obejmuje następujące biblioteki najwyższego poziomu:
- GraphFrames
- Horovod i HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Biblioteki języka Python
Środowisko Databricks Runtime 10.5 ML używa usługi Virtualenv do zarządzania pakietami języka Python i zawiera wiele popularnych pakietów uczenia maszynowego.
Oprócz pakietów określonych w poniższych sekcjach środowisko Databricks Runtime 10.5 ML zawiera również następujące pakiety:
- hyperopt 0.2.7.db1
- sparkdl 2.2.0-db6
- feature_store 0.4.1
- automl 1.8.0
Biblioteki języka Python w klastrach procesora CPU
Biblioteka | Wersja | Biblioteka | Wersja | Biblioteka | Wersja |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (rolling ISO) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | Astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | wybielacz | 3.3.0 |
blis | 0.7.7 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | katalog | 2.0.7 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | kliknięcie | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
konwertuj | 2.4.0 | kryptografia | 3.4.7 | rowerzysta | 0.10.0 |
cymem | 2.0.6 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.7 |
databricks-cli | 0.16.4 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
dekorator | 5.0.6 | defusedxml | 0.7.1 | koper | 0.3.2 |
diskcache | 5.4.0 | distlib | 0.3.4 | dystrybucja informacji | 0.23ubuntu1 |
punkty wejścia | 0.3 | efem | 4.1.3 | aspekty — omówienie | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2.0 | fsspec | 0.9.0 | przyszłość | 0.18.2 |
Gast | 0.4.0 | gitdb | 4.0.9 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | makaron google | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | konwerter hidżri | 2.2.3 | wakacje | 0,13 |
horovod | 0.23.0 | htmlmin | 0.1.12 | przytulanieface-hub | 0.5.1 |
idna | 2.10 | ImageHash | 4.2.1 | niezrównoważona nauka | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
jegodangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
Przetwarzanie wstępne protokołu Keras | 1.1.2 | kiwisolver | 1.3.1 | Koale | 1.8.2 |
koreański kalendarz księżycowy | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | KsiężycowyCalendar | 0.0.9 |
Mako | 1.1.3 | Znaczniki języka Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.8 |
szmurhash | 1.0.6 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2,5 |
nltk | 3.6.1 | notes | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
opakowanie | 21,3 | Pandas | 1.2.4 | Profilowanie biblioteki pandas | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.1 | Patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.2 | pickleshare | 0.7.5 |
Poduszka | 8.2.0 | 21.0.1 | kreślenie | 5.6.0 | |
pmdarima | 1.8.5 | preshed | 3.0.6 | prometheus-client | 0.10.1 |
prompt-toolkit | 3.0.17 | prorok | 1.0.1 | protobuf | 3.17.2 |
psutil | 5.8.0 | psycopg2 | 2.8.5 | ptyprocess | 0.7.0 |
pyarrow | 4.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.9.2 | pycparser | 2,20 | pydantic | 1.8.2 |
Pygments | 2.8.1 | PyGObject | 3.36.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.5.0 | pyodbc | 4.0.30 | pyparsing | 2.4.7 |
pirstent | 0.17.3 | pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 |
python-dateutil | 2.8.1 | Python-editor | 1.0.4 | python-engineio | 4.3.0 |
python-socketio | 5.4.1 | pytz | 2020.5 | PyWavelets | 1.1.1 |
PyYAML | 5.4.1 | pyzmq | 20.0.0 | regex | 2021.4.4 |
żądania | 2.25.1 | requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 |
rsa | 4.8 | s3transfer | 0.3.7 | sacremoses | 0.0.49 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
Send2Trash | 1.5.0 | setuptools | 52.0.0 | setuptools-git | 1.2 |
Shap | 0.40.0 | simplejson | 3.17.2 | Sześć | 1.15.0 |
krajalnica | 0.0.7 | smart-open | 5.2.1 | smmap | 3.0.5 |
spacy | 3.2.3 | spacy-legacy | 3.0.9 | spacy-loggers | 1.0.2 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 | srsly | 2.4.3 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulacji | 0.8.7 |
splątane-up-in-unicode | 0.1.0 | Wytrzymałość | 6.2.0 | tablica tensorboard | 2.8.0 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 |
tensorflow-cpu | 2.8.0 | tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | ścieżka testowa | 0.4.4 |
tf-estimator-nightly | 2.8.0.dev2021212109 | cienki | 8.0.15 | threadpoolctl | 2.1.0 |
tokenizatory | 0.12.1 | pochodnia | 1.10.2+procesor | torchvision | 0.11.3+procesor |
tornado | 6.1 | tqdm | 4.59.0 | traitlety | 5.0.5 |
Transformatory | 4.17.0 | typer | 0.4.1 | wpisywanie rozszerzeń | 3.7.4.3 |
ujson | 4.0.2 | nienadzorowane uaktualnienia | 0.1 | urllib3 | 1.25.11 |
virtualenv | 20.4.1 | Wizje | 0.7.4 | wasabi | 0.9.1 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | koło | 0.36.2 | widgetsnbextension | 3.5.1 |
zawijanie | 1.12.1 | xgboost | 1.5.2 | zipp | 3.4.1 |
Biblioteki języka Python w klastrach gpu
Biblioteka | Wersja | Biblioteka | Wersja | Biblioteka | Wersja |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (rolling ISO) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | Astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | wybielacz | 3.3.0 |
blis | 0.7.7 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | katalog | 2.0.7 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | kliknięcie | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
konwertuj | 2.4.0 | kryptografia | 3.4.7 | rowerzysta | 0.10.0 |
cymem | 2.0.6 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.7 |
databricks-cli | 0.16.4 | dbl-tempo | 0.1.2 | dbus-python | 1.2.16 |
dekorator | 5.0.6 | defusedxml | 0.7.1 | koper | 0.3.2 |
diskcache | 5.4.0 | distlib | 0.3.4 | dystrybucja informacji | 0.23ubuntu1 |
punkty wejścia | 0.3 | efem | 4.1.3 | aspekty — omówienie | 1.0.0 |
fasttext | 0.9.2 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 2.0 | fsspec | 0.9.0 | przyszłość | 0.18.2 |
Gast | 0.4.0 | gitdb | 4.0.9 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | makaron google | 0.2.0 |
grpcio | 1.39.0 | gunicorn | 20.0.4 | gviz-api | 1.10.0 |
h5py | 3.1.0 | konwerter hidżri | 2.2.3 | wakacje | 0,13 |
horovod | 0.23.0 | htmlmin | 0.1.12 | przytulanieface-hub | 0.5.1 |
idna | 2.10 | ImageHash | 4.2.1 | niezrównoważona nauka | 0.8.1 |
importlib-metadata | 3.10.0 | ipykernel | 5.3.4 | ipython | 7.22.0 |
ipython-genutils | 0.2.0 | ipywidgets | 7.6.3 | isodate | 0.6.0 |
jegodangerous | 1.1.0 | jedi | 0.17.2 | Jinja2 | 2.11.3 |
jmespath | 0.10.0 | joblib | 1.0.1 | joblibspark | 0.3.0 |
jsonschema | 3.2.0 | jupyter-client | 6.1.12 | jupyter-core | 4.7.1 |
jupyterlab-pygments | 0.1.2 | jupyterlab-widgets | 1.0.0 | keras | 2.8.0 |
Przetwarzanie wstępne protokołu Keras | 1.1.2 | kiwisolver | 1.3.1 | Koale | 1.8.2 |
koreański kalendarz księżycowy | 0.2.1 | langcodes | 3.3.0 | libclang | 13.0.0 |
lightgbm | 3.3.2 | llvmlite | 0.38.0 | KsiężycowyCalendar | 0.0.9 |
Mako | 1.1.3 | Znaczniki języka Markdown | 3.3.3 | MarkupSafe | 2.0.1 |
matplotlib | 3.4.2 | missingno | 0.5.1 | mistune | 0.8.4 |
mleap | 0.18.1 | mlflow-skinny | 1.24.0 | multimethod | 1.8 |
szmurhash | 1.0.6 | nbclient | 0.5.3 | nbconvert | 6.0.7 |
nbformat | 5.1.3 | nest-asyncio | 1.5.1 | networkx | 2,5 |
nltk | 3.6.1 | notes | 6.3.0 | numba | 0.55.1 |
numpy | 1.20.1 | oauthlib | 3.1.0 | opt-einsum | 3.3.0 |
opakowanie | 21,3 | Pandas | 1.2.4 | Profilowanie biblioteki pandas | 3.1.0 |
pandocfilters | 1.4.3 | paramiko | 2.7.2 | parso | 0.7.0 |
pathy | 0.6.1 | Patsy | 0.5.1 | petastorm | 0.11.4 |
pexpect | 4.8.0 | phik | 0.12.2 | pickleshare | 0.7.5 |
Poduszka | 8.2.0 | 21.0.1 | kreślenie | 5.6.0 | |
pmdarima | 1.8.5 | preshed | 3.0.6 | prompt-toolkit | 3.0.17 |
prorok | 1.0.1 | protobuf | 3.17.2 | psutil | 5.8.0 |
psycopg2 | 2.8.5 | ptyprocess | 0.7.0 | pyarrow | 4.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pybind11 | 2.9.2 |
pycparser | 2,20 | pydantic | 1.8.2 | Pygments | 2.8.1 |
PyGObject | 3.36.0 | PyMeeus | 0.5.11 | PyNaCl | 1.5.0 |
pyodbc | 4.0.30 | pyparsing | 2.4.7 | pirstent | 0.17.3 |
pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.7 | python-dateutil | 2.8.1 |
Python-editor | 1.0.4 | python-engineio | 4.3.0 | python-socketio | 5.4.1 |
pytz | 2020.5 | PyWavelets | 1.1.1 | PyYAML | 5.4.1 |
pyzmq | 20.0.0 | regex | 2021.4.4 | żądania | 2.25.1 |
requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 | rsa | 4.8 |
s3transfer | 0.3.7 | sacremoses | 0.0.49 | scikit-learn | 0.24.1 |
scipy | 1.6.2 | seaborn | 0.11.1 | Send2Trash | 1.5.0 |
setuptools | 52.0.0 | setuptools-git | 1.2 | Shap | 0.40.0 |
simplejson | 3.17.2 | Sześć | 1.15.0 | krajalnica | 0.0.7 |
smart-open | 5.2.1 | smmap | 3.0.5 | spacy | 3.2.3 |
spacy-legacy | 3.0.9 | spacy-loggers | 1.0.2 | spark-tensorflow-distributor | 1.0.0 |
sqlparse | 0.4.1 | srsly | 2.4.3 | ssh-import-id | 5.10 |
statsmodels | 0.12.2 | tabulacji | 0.8.7 | splątane-up-in-unicode | 0.1.0 |
Wytrzymałość | 6.2.0 | tablica tensorboard | 2.8.0 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.1 | tensorflow | 2.8.0 |
tensorflow-estimator | 2.8.0 | tensorflow-io-gcs-filesystem | 0.24.0 | termcolor | 1.1.0 |
terminado | 0.9.4 | ścieżka testowa | 0.4.4 | tf-estimator-nightly | 2.8.0.dev2021212109 |
cienki | 8.0.15 | threadpoolctl | 2.1.0 | tokenizatory | 0.12.1 |
pochodnia | 1.10.2+cu113 | torchvision | 0.11.3+cu113 | tornado | 6.1 |
tqdm | 4.59.0 | traitlety | 5.0.5 | Transformatory | 4.17.0 |
typer | 0.4.1 | wpisywanie rozszerzeń | 3.7.4.3 | ujson | 4.0.2 |
nienadzorowane uaktualnienia | 0.1 | urllib3 | 1.25.11 | virtualenv | 20.4.1 |
Wizje | 0.7.4 | wasabi | 0.9.1 | wcwidth | 0.2.5 |
webencodings | 0.5.1 | websocket-client | 0.57.0 | Werkzeug | 1.0.1 |
koło | 0.36.2 | widgetsnbextension | 3.5.1 | zawijanie | 1.12.1 |
xgboost | 1.5.2 | zipp | 3.4.1 |
Pakiety platformy Spark zawierające moduły języka Python
Pakiet Platformy Spark | Moduł języka Python | Wersja |
---|---|---|
ramki grafu | ramki grafu | 0.8.2-db1-spark3.2 |
Biblioteki R
Biblioteki języka R są identyczne z bibliotekami języka R w środowisku Databricks Runtime 10.5.
Biblioteki Java i Scala (klaster Scala 2.12)
Oprócz bibliotek Java i Scala w środowisku Databricks Runtime 10.5 środowisko Databricks Runtime 10.5 ML zawiera następujące elementy JAR:
Klastry procesora CPU
Identyfikator grupy | Identyfikator artefaktu | Wersja |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Klastry procesora GPU
Identyfikator grupy | Identyfikator artefaktu | Wersja |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.2 |
ml.dmlc | xgboost4j_2.12 | 1.5.2 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.24.0 |
org.mlflow | mlflow-spark | 1.24.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |