Databricks Runtime 10.2 for ML (EoS)
Uwaga
Obsługa tej wersji środowiska Databricks Runtime została zakończona. Aby uzyskać datę zakończenia pomocy technicznej, zobacz Historia zakończenia pomocy technicznej. Wszystkie obsługiwane wersje środowiska Databricks Runtime można znaleźć w temacie Databricks Runtime release notes versions and compatibility (Wersje i zgodność środowiska Databricks Runtime).
Usługa Databricks wydała tę wersję w grudniu 2021 r.
Środowisko Databricks Runtime 10.2 for Machine Learning zapewnia gotowe do użycia środowisko do uczenia maszynowego i nauki o danych oparte na środowisku Databricks Runtime 10.2 (EoS). Środowisko Databricks Runtime ML zawiera wiele popularnych bibliotek uczenia maszynowego, w tym TensorFlow, PyTorch i XGBoost. Środowisko Databricks Runtime ML obejmuje rozwiązanie AutoML— narzędzie do automatycznego trenowania potoków uczenia maszynowego. Środowisko Databricks Runtime ML obsługuje również trenowanie rozproszonego uczenia głębokiego przy użyciu struktury Horovod.
Aby uzyskać więcej informacji, w tym instrukcje dotyczące tworzenia klastra uczenia maszynowego usługi Databricks Runtime, zobacz Sztuczna inteligencja i uczenie maszynowe w usłudze Databricks.
Nowe funkcje i ulepszenia
Środowisko Databricks Runtime 10.2 ML jest oparte na środowisku Databricks Runtime 10.2. Aby uzyskać informacje o nowościach w środowisku Databricks Runtime 10.2, w tym apache Spark MLlib i SparkR, zobacz informacje o wersji środowiska Databricks Runtime 10.2 (EoS).
Automatyczne rejestrowanie usługi Databricks (publiczna wersja zapoznawcza)
Automatyczne rejestrowanie usługi Databricks jest teraz dostępne w publicznej wersji zapoznawczej we wszystkich regionach. Automatyczne rejestrowanie usługi Databricks to rozwiązanie bez kodu, które zapewnia automatyczne śledzenie eksperymentów na potrzeby sesji uczenia maszynowego w usłudze Azure Databricks. Dzięki funkcji automatycznego rejestrowania usługi Databricks parametry modelu, metryki, pliki i informacje o pochodzenia są automatycznie przechwytywane podczas trenowania modeli z różnych popularnych bibliotek uczenia maszynowego. Sesje szkoleniowe są rejestrowane jako przebiegi śledzenia MLflow. Pliki modelu są również śledzone, dzięki czemu można je łatwo rejestrować w rejestrze modeli MLflow i wdrażać je na potrzeby oceniania w czasie rzeczywistym za pomocą usługi MLflow Model Serving.
Aby uzyskać więcej informacji na temat automatycznego rejestrowania w usłudze Databricks, zobacz Automatyczne rejestrowanie w usłudze Databricks.
Ulepszenia rozwiązania AutoML
Następujące ulepszenia zostały wprowadzone do rozwiązania AutoML.
- Rozwiązanie AutoML ignoruje kolumny, które mają tylko jedną wartość.
- W przypadku problemów klasyfikacji i regresji kolumna czasu używana do dzielenia zestawu danych na zestawy szkoleniowe, walidacji i zestawów testów chronologicznie może być teraz typem ciągu. Wcześniej obsługiwane były tylko znaczniki czasu i liczba całkowita. Aby uzyskać szczegółowe informacje, zobacz Dzielenie danych na trenowanie, walidację i zestawy testów.
Ulepszenia magazynu funkcji usługi Databricks
Następujące ulepszenia zostały wprowadzone w usłudze Databricks Feature Store.
Uproszczony FeatureStoreClient
interfejs
Interfejs FeatureStoreClient został uproszczony.
FeatureStoreClient.create_feature_table()
został przestarzały. Zamiast tego użyj poleceniaFeatureStoreClient.create_table()
.FeatureStoreClient.get_feature_table()
został przestarzały. Zamiast tego użyj poleceniaFeatureStoreClient.get_table()
.- Wszystkie argumenty do
FeatureStoreClient.publish_table()
innych niżname
ionline_store
muszą być przekazywane jako argumenty kluczowe.
Publikowanie tylko wybranych kolumn w sklepach online
Usługa Databricks Feature Store obsługuje teraz publikowanie tylko wybranych kolumn w sklepie online. Aby uzyskać więcej informacji, zobacz Publikowanie wybranych funkcji w sklepie online.
Istotne zmiany w środowisku języka Python środowiska Databricks Runtime ML
Integracja zautomatyzowanego śledzenia MLflow dla biblioteki MLlib platformy Apache Spark, która została wycofana w środowisku Databricks Runtime 10.1 ML, jest teraz domyślnie wyłączona w środowisku Databricks Runtime 10.2 ML. Został on zastąpiony przez integrację automatycznego rejestrowania uczenia maszynowego PySpark ML MLflow, która jest domyślnie włączona w usłudze Databricks Autologging. Automatyczne rejestrowanie rejestruje dodatkowe informacje poza tym, co zautomatyzowane śledzenie MLflow dla przechwyconych bibliotek MLlib, w tym parametry, metryki i artefakty skojarzone z najlepszym modelem.
Uaktualnione pakiety języka Python
- databricks-cli 0.14.3 => 0.16.2
- keras 2.6.0 => 2.7.0
- lightgbm 3.3.0 => 3.3.1
- mlflow 1.21.0 => 1.22.0
- plotly 5.3.0 => 5.3.1
- shap 0.39.0 => 0.40.0
- spacy 3.1.3 => 3.2.0
- tensorboard 2.6.0 => 2.7.0
- tensorflow 2.6.0 => 2.7.0
- torch 1.9.1 => 1.10.0
- torchvision 0.10.1 => 0.11.1
- transformatory 4.11.3 => 4.12.3
- xgboost 1.4.2 => 1.5.0
Środowisko systemu
Środowisko systemowe w środowisku Databricks Runtime 10.2 ML różni się od środowiska Databricks Runtime 10.2 w następujący sposób:
- DBUtils: Środowisko uruchomieniowe Databricks Runtime ML nie zawiera narzędzia biblioteki (dbutils.library) (starsza wersja).
Zamiast tego użyj
%pip
poleceń. Zobacz Biblioteki języka Python o zakresie notesu. - W przypadku klastrów gpu środowisko Databricks Runtime ML obejmuje następujące biblioteki procesora GPU FIRMY NVIDIA:
- CUDA 11.0
- cuDNN 8.0.5.39
- NCCL 2.10.3
- TensorRT 7.2.2
Biblioteki
W poniższych sekcjach wymieniono biblioteki zawarte w środowisku Databricks Runtime 10.2 ML, które różnią się od bibliotek zawartych w środowisku Databricks Runtime 10.2.
W tej sekcji:
- Biblioteki najwyższego poziomu
- Biblioteki języka Python
- Biblioteki języka R
- Biblioteki Java i Scala (klaster Scala 2.12)
Biblioteki najwyższego poziomu
Środowisko Databricks Runtime 10.2 ML obejmuje następujące biblioteki najwyższego poziomu:
- GraphFrames
- Horovod i HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Biblioteki języka Python
Środowisko Databricks Runtime 10.2 ML używa usługi Virtualenv do zarządzania pakietami języka Python i zawiera wiele popularnych pakietów uczenia maszynowego.
Oprócz pakietów określonych w poniższych sekcjach środowisko Databricks Runtime 10.2 ML zawiera również następujące pakiety:
- hyperopt 0.2.7.db1
- sparkdl 2.2.0-db5
- feature_store 0.3.6
- automl 1.5.0
Biblioteki języka Python w klastrach procesora CPU
Biblioteka | Wersja | Biblioteka | Wersja | Biblioteka | Wersja |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (rolling ISO) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | Astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | wybielacz | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | katalog | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | kliknięcie | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
konwertuj | 2.3.2 | kryptografia | 3.4.7 | rowerzysta | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.4 |
databricks-cli | 0.16.2 | dbus-python | 1.2.16 | dekorator | 5.0.6 |
defusedxml | 0.7.1 | koper | 0.3.2 | diskcache | 5.2.1 |
distlib | 0.3.3 | dystrybucja informacji | 0.23ubuntu1 | punkty wejścia | 0.3 |
efem | 4.1.1 | aspekty — omówienie | 1.0.0 | fasttext | 0.9.2 |
filelock | 3.0.12 | Flask | 1.1.2 | flatbuffers | 2.0 |
fsspec | 0.9.0 | przyszłość | 0.18.2 | Gast | 0.4.0 |
gitdb | 4.0.7 | GitPython | 3.1.12 | google-auth | 1.22.1 |
google-auth-oauthlib | 0.4.2 | makaron google | 0.2.0 | grpcio | 1.39.0 |
gunicorn | 20.0.4 | gviz-api | 1.10.0 | h5py | 3.1.0 |
konwerter hidżri | 2.2.2 | wakacje | 0.11.3.1 | horovod | 0.23.0 |
htmlmin | 0.1.12 | przytulanieface-hub | 0.1.2 | idna | 2.10 |
ImageHash | 4.2.1 | niezrównoważona nauka | 0.8.1 | importlib-metadata | 3.10.0 |
ipykernel | 5.3.4 | ipython | 7.22.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.6.3 | isodate | 0.6.0 | jegodangerous | 1.1.0 |
jedi | 0.17.2 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | joblibspark | 0.3.0 | jsonschema | 3.2.0 |
jupyter-client | 6.1.12 | jupyter-core | 4.7.1 | jupyterlab-pygments | 0.1.2 |
jupyterlab-widgets | 1.0.0 | keras | 2.7.0 | Przetwarzanie wstępne protokołu Keras | 1.1.2 |
kiwisolver | 1.3.1 | Koale | 1.8.2 | koreański kalendarz księżycowy | 0.2.1 |
langcodes | 3.3.0 | libclang | 12.0.0 | lightgbm | 3.3.1 |
llvmlite | 0.37.0 | KsiężycowyCalendar | 0.0.9 | Mako | 1.1.3 |
Znaczniki języka Markdown | 3.3.3 | MarkupSafe | 2.0.1 | matplotlib | 3.4.2 |
missingno | 0.5.0 | mistune | 0.8.4 | mleap | 0.18.1 |
mlflow-skinny | 1.22.0 | multimethod | 1.6 | szmurhash | 1.0.5 |
nbclient | 0.5.3 | nbconvert | 6.0.7 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | networkx | 2,5 | nltk | 3.6.1 |
notes | 6.3.0 | numba | 0.54.1 | numpy | 1.19.2 |
oauthlib | 3.1.0 | opt-einsum | 3.3.0 | opakowanie | 21,3 |
Pandas | 1.2.4 | Profilowanie biblioteki pandas | 3.1.0 | pandocfilters | 1.4.3 |
paramiko | 2.7.2 | parso | 0.7.0 | pathy | 0.6.0 |
Patsy | 0.5.1 | petastorm | 0.11.3 | pexpect | 4.8.0 |
phik | 0.12.0 | pickleshare | 0.7.5 | Poduszka | 8.2.0 |
21.0.1 | kreślenie | 5.3.1 | preshed | 3.0.5 | |
prometheus-client | 0.10.1 | prompt-toolkit | 3.0.17 | prorok | 1.0.1 |
protobuf | 3.17.2 | psutil | 5.8.0 | psycopg2 | 2.8.5 |
ptyprocess | 0.7.0 | pyarrow | 4.0.0 | pyasn1 | 0.4.8 |
pyasn1-modules | 0.2.8 | pybind11 | 2.8.1 | pycparser | 2,20 |
pydantic | 1.8.2 | Pygments | 2.8.1 | PyGObject | 3.36.0 |
PyMeeus | 0.5.11 | PyNaCl | 1.4.0 | pyodbc | 4.0.30 |
pyparsing | 2.4.7 | pirstent | 0.17.3 | pystan | 2.19.1.1 |
python-apt | 2.0.0+ubuntu0.20.4.6 | python-dateutil | 2.8.1 | Python-editor | 1.0.4 |
python-engineio | 4.3.0 | python-socketio | 5.4.1 | pytz | 2020.5 |
PyWavelets | 1.1.1 | PyYAML | 5.4.1 | pyzmq | 20.0.0 |
regex | 2021.4.4 | żądania | 2.25.1 | requests-oauthlib | 1.3.0 |
requests-unixsocket | 0.2.0 | rsa | 4.7.2 | s3transfer | 0.3.7 |
sacremoses | 0.0.46 | scikit-learn | 0.24.1 | scipy | 1.6.2 |
seaborn | 0.11.1 | Send2Trash | 1.5.0 | setuptools | 52.0.0 |
setuptools-git | 1.2 | Shap | 0.40.0 | simplejson | 3.17.2 |
Sześć | 1.15.0 | krajalnica | 0.0.7 | smart-open | 5.2.0 |
smmap | 3.0.5 | spacy | 3.2.0 | spacy-legacy | 3.0.8 |
spacy-loggers | 1.0.1 | spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 |
srsly | 2.4.1 | ssh-import-id | 5.10 | statsmodels | 0.12.2 |
tabulacji | 0.8.7 | splątane-up-in-unicode | 0.1.0 | Wytrzymałość | 6.2.0 |
tablica tensorboard | 2.7.0 | tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 |
tensorboard-plugin-wit | 1.8.0 | tensorflow-cpu | 2.7.0 | tensorflow-estimator | 2.7.0 |
tensorflow-io-gcs-filesystem | 0.22.0 | termcolor | 1.1.0 | terminado | 0.9.4 |
ścieżka testowa | 0.4.4 | cienki | 8.0.12 | threadpoolctl | 2.1.0 |
tokenizatory | 0.10.3 | pochodnia | 1.10.0+procesor | torchvision | 0.11.1+procesor |
tornado | 6.1 | tqdm | 4.59.0 | traitlety | 5.0.5 |
Transformatory | 4.12.3 | typer | 0.3.2 | wpisywanie rozszerzeń | 3.7.4.3 |
ujson | 4.0.2 | nienadzorowane uaktualnienia | 0.1 | urllib3 | 1.25.11 |
virtualenv | 20.4.1 | Wizje | 0.7.4 | wasabi | 0.8.2 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | koło | 0.36.2 | widgetsnbextension | 3.5.1 |
zawijanie | 1.12.1 | xgboost | 1.5.0 | zipp | 3.4.1 |
Biblioteki języka Python w klastrach gpu
Biblioteka | Wersja | Biblioteka | Wersja | Biblioteka | Wersja |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (rolling ISO) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | Astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | wybielacz | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | katalog | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | kliknięcie | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
konwertuj | 2.3.2 | kryptografia | 3.4.7 | rowerzysta | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.4 |
databricks-cli | 0.16.2 | dbus-python | 1.2.16 | dekorator | 5.0.6 |
defusedxml | 0.7.1 | koper | 0.3.2 | diskcache | 5.2.1 |
distlib | 0.3.3 | dystrybucja informacji | 0.23ubuntu1 | punkty wejścia | 0.3 |
efem | 4.1.1 | aspekty — omówienie | 1.0.0 | fasttext | 0.9.2 |
filelock | 3.0.12 | Flask | 1.1.2 | flatbuffers | 2.0 |
fsspec | 0.9.0 | przyszłość | 0.18.2 | Gast | 0.4.0 |
gitdb | 4.0.7 | GitPython | 3.1.12 | google-auth | 1.22.1 |
google-auth-oauthlib | 0.4.2 | makaron google | 0.2.0 | grpcio | 1.39.0 |
gunicorn | 20.0.4 | gviz-api | 1.10.0 | h5py | 3.1.0 |
konwerter hidżri | 2.2.2 | wakacje | 0.11.3.1 | horovod | 0.23.0 |
htmlmin | 0.1.12 | przytulanieface-hub | 0.1.2 | idna | 2.10 |
ImageHash | 4.2.1 | niezrównoważona nauka | 0.8.1 | importlib-metadata | 3.10.0 |
ipykernel | 5.3.4 | ipython | 7.22.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.6.3 | isodate | 0.6.0 | jegodangerous | 1.1.0 |
jedi | 0.17.2 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | joblibspark | 0.3.0 | jsonschema | 3.2.0 |
jupyter-client | 6.1.12 | jupyter-core | 4.7.1 | jupyterlab-pygments | 0.1.2 |
jupyterlab-widgets | 1.0.0 | keras | 2.7.0 | Przetwarzanie wstępne protokołu Keras | 1.1.2 |
kiwisolver | 1.3.1 | Koale | 1.8.2 | koreański kalendarz księżycowy | 0.2.1 |
langcodes | 3.3.0 | libclang | 12.0.0 | lightgbm | 3.3.1 |
llvmlite | 0.37.0 | KsiężycowyCalendar | 0.0.9 | Mako | 1.1.3 |
Znaczniki języka Markdown | 3.3.3 | MarkupSafe | 2.0.1 | matplotlib | 3.4.2 |
missingno | 0.5.0 | mistune | 0.8.4 | mleap | 0.18.1 |
mlflow-skinny | 1.22.0 | multimethod | 1.6 | szmurhash | 1.0.5 |
nbclient | 0.5.3 | nbconvert | 6.0.7 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | networkx | 2,5 | nltk | 3.6.1 |
notes | 6.3.0 | numba | 0.54.1 | numpy | 1.19.2 |
oauthlib | 3.1.0 | opt-einsum | 3.3.0 | opakowanie | 21,3 |
Pandas | 1.2.4 | Profilowanie biblioteki pandas | 3.1.0 | pandocfilters | 1.4.3 |
paramiko | 2.7.2 | parso | 0.7.0 | pathy | 0.6.0 |
Patsy | 0.5.1 | petastorm | 0.11.3 | pexpect | 4.8.0 |
phik | 0.12.0 | pickleshare | 0.7.5 | Poduszka | 8.2.0 |
21.0.1 | kreślenie | 5.3.1 | preshed | 3.0.5 | |
prompt-toolkit | 3.0.17 | prorok | 1.0.1 | protobuf | 3.17.2 |
psutil | 5.8.0 | psycopg2 | 2.8.5 | ptyprocess | 0.7.0 |
pyarrow | 4.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.8.1 | pycparser | 2,20 | pydantic | 1.8.2 |
Pygments | 2.8.1 | PyGObject | 3.36.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.4.0 | pyodbc | 4.0.30 | pyparsing | 2.4.7 |
pirstent | 0.17.3 | pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.6 |
python-dateutil | 2.8.1 | Python-editor | 1.0.4 | python-engineio | 4.3.0 |
python-socketio | 5.4.1 | pytz | 2020.5 | PyWavelets | 1.1.1 |
PyYAML | 5.4.1 | pyzmq | 20.0.0 | regex | 2021.4.4 |
żądania | 2.25.1 | requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 |
rsa | 4.7.2 | s3transfer | 0.3.7 | sacremoses | 0.0.46 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
Send2Trash | 1.5.0 | setuptools | 52.0.0 | setuptools-git | 1.2 |
Shap | 0.40.0 | simplejson | 3.17.2 | Sześć | 1.15.0 |
krajalnica | 0.0.7 | smart-open | 5.2.0 | smmap | 3.0.5 |
spacy | 3.2.0 | spacy-legacy | 3.0.8 | spacy-loggers | 1.0.1 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 | srsly | 2.4.1 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulacji | 0.8.7 |
splątane-up-in-unicode | 0.1.0 | Wytrzymałość | 6.2.0 | tablica tensorboard | 2.7.0 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.0 |
tensorflow | 2.7.0 | tensorflow-estimator | 2.7.0 | tensorflow-io-gcs-filesystem | 0.22.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | ścieżka testowa | 0.4.4 |
cienki | 8.0.12 | threadpoolctl | 2.1.0 | tokenizatory | 0.10.3 |
pochodnia | 1.10.0+cu111 | torchvision | 0.11.1+cu111 | tornado | 6.1 |
tqdm | 4.59.0 | traitlety | 5.0.5 | Transformatory | 4.12.3 |
typer | 0.3.2 | wpisywanie rozszerzeń | 3.7.4.3 | ujson | 4.0.2 |
nienadzorowane uaktualnienia | 0.1 | urllib3 | 1.25.11 | virtualenv | 20.4.1 |
Wizje | 0.7.4 | wasabi | 0.8.2 | wcwidth | 0.2.5 |
webencodings | 0.5.1 | websocket-client | 0.57.0 | Werkzeug | 1.0.1 |
koło | 0.36.2 | widgetsnbextension | 3.5.1 | zawijanie | 1.12.1 |
xgboost | 1.5.0 | zipp | 3.4.1 |
Pakiety platformy Spark zawierające moduły języka Python
Pakiet Platformy Spark | Moduł języka Python | Wersja |
---|---|---|
ramki grafu | ramki grafu | 0.8.2-db1-spark3.2 |
Biblioteki R
Biblioteki języka R są identyczne z bibliotekami języka R w środowisku Databricks Runtime 10.2.
Biblioteki Java i Scala (klaster Scala 2.12)
Oprócz bibliotek Java i Scala w środowisku Databricks Runtime 10.2 środowisko Databricks Runtime 10.2 ML zawiera następujące elementy JAR:
Klastry procesora CPU
Identyfikator grupy | Identyfikator artefaktu | Wersja |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.1 |
ml.dmlc | xgboost4j_2.12 | 1.5.1 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.22.0 |
org.mlflow | mlflow-spark | 1.22.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Klastry procesora GPU
Identyfikator grupy | Identyfikator artefaktu | Wersja |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.1 |
ml.dmlc | xgboost4j_2.12 | 1.5.1 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.22.0 |
org.mlflow | mlflow-spark | 1.22.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |