Udostępnij za pośrednictwem


Szybki start: wykrywanie danych osobowych (PII)

Uwaga

Ten przewodnik Szybki start obejmuje tylko wykrywanie danych przez dane osobowe w dokumentach. Aby dowiedzieć się więcej na temat wykrywania danych pii w konwersacjach, zobacz Jak wykrywać i redagować dane osobowe podczas konwersacji.

Dokumentacja referencyjna Więcej przykładów | Package (NuGet) | Library source code |

Użyj tego przewodnika Szybki start, aby utworzyć aplikację do wykrywania danych osobowych (PII) z biblioteką klienta dla platformy .NET. W poniższym przykładzie utworzysz aplikację w języku C#, która może identyfikować rozpoznane poufne informacje w tekście.

Napiwek

Narzędzie Azure AI Foundry umożliwia wypróbowanie podsumowania bez konieczności pisania kodu.

Wymagania wstępne

Konfigurowanie

Tworzenie zmiennych środowiskowych

Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.

Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.

  • Aby ustawić zmienną LANGUAGE_KEY środowiskową, zastąp your-key element jednym z kluczy zasobu.
  • Aby ustawić zmienną LANGUAGE_ENDPOINT środowiskową, zastąp your-endpoint element punktem końcowym zasobu.

Ważne

Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.

Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Uwaga

Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set zamiast setx.

Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.

Tworzenie nowej aplikacji .NET Core

Za pomocą środowiska IDE programu Visual Studio utwórz nową aplikację konsolową platformy .NET Core. Spowoduje to utworzenie projektu "Hello World" z pojedynczym plikiem źródłowym języka C#: program.cs.

Zainstaluj bibliotekę klienta, klikając prawym przyciskiem myszy rozwiązanie w Eksploratorze rozwiązań i wybierając polecenie Zarządzaj pakietami NuGet. W menedżerze pakietów, który zostanie otwarty, wybierz pozycję Przeglądaj i wyszukaj ciąg Azure.AI.TextAnalytics. Wybierz wersję 5.2.0, a następnie pozycję Zainstaluj. Możesz również użyć konsoli menedżera pakietów.

Przykład kodu

Skopiuj następujący kod do pliku program.cs i uruchom kod.

using Azure;
using System;
using Azure.AI.TextAnalytics;

namespace Example
{
    class Program
    {
        // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
        static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
        static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");

        private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
        private static readonly Uri endpoint = new Uri(languageEndpoint);

        // Example method for detecting sensitive information (PII) from text 
        static void RecognizePIIExample(TextAnalyticsClient client)
        {
            string document = "Call our office at 312-555-1234, or send an email to support@contoso.com.";
        
            PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;
        
            Console.WriteLine($"Redacted Text: {entities.RedactedText}");
            if (entities.Count > 0)
            {
                Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
                foreach (PiiEntity entity in entities)
                {
                    Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: {entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
                }
            }
            else
            {
                Console.WriteLine("No entities were found.");
            }
        }

        static void Main(string[] args)
        {
            var client = new TextAnalyticsClient(endpoint, credentials);
            RecognizePIIExample(client);

            Console.Write("Press any key to exit.");
            Console.ReadKey();
        }

    }
}

Wyjście

Redacted Text: Call our office at ************, or send an email to *******************.
Recognized 2 PII entities:
Text: 312-555-1234, Category: PhoneNumber, SubCategory: , Confidence score: 0.8
Text: support@contoso.com, Category: Email, SubCategory: , Confidence score: 0.8

Dokumentacja referencyjna Więcej przykładów | Package (Maven) | Library source code |

Użyj tego przewodnika Szybki start, aby utworzyć aplikację do wykrywania danych osobowych (PII) z biblioteką klienta dla języka Java. W poniższym przykładzie utworzysz aplikację Java, która może identyfikować rozpoznane poufne informacje w tekście.

Napiwek

Narzędzie Azure AI Foundry umożliwia wypróbowanie podsumowania bez konieczności pisania kodu.

Wymagania wstępne

Konfigurowanie

Tworzenie zmiennych środowiskowych

Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.

Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.

  • Aby ustawić zmienną LANGUAGE_KEY środowiskową, zastąp your-key element jednym z kluczy zasobu.
  • Aby ustawić zmienną LANGUAGE_ENDPOINT środowiskową, zastąp your-endpoint element punktem końcowym zasobu.

Ważne

Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.

Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Uwaga

Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set zamiast setx.

Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.

Dodawanie biblioteki klienta

Utwórz projekt Maven w preferowanym środowisku IDE lub w środowisku deweloperskim. Następnie dodaj następującą zależność do pliku pom.xml projektu. Składnię implementacji dla innych narzędzi kompilacji można znaleźć w Internecie.

<dependencies>
     <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
</dependencies>

Przykład kodu

Utwórz plik Java o nazwie Example.java. Otwórz plik i skopiuj poniższy kod. Następnie uruchom kod.

import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;

public class Example {

    // This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
    private static String languageKey = System.getenv("LANGUAGE_KEY");
    private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");

    public static void main(String[] args) {
        TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
        recognizePiiEntitiesExample(client);
    }
    // Method to authenticate the client object with your key and endpoint
    static TextAnalyticsClient authenticateClient(String key, String endpoint) {
        return new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(key))
                .endpoint(endpoint)
                .buildClient();
    }

    // Example method for detecting sensitive information (PII) from text 
    static void recognizePiiEntitiesExample(TextAnalyticsClient client)
    {
        // The text that need be analyzed.
        String document = "My SSN is 859-98-0987";
        PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
        System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
        piiEntityCollection.forEach(entity -> System.out.printf(
            "Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: %s,"
                + " confidence score: %f.%n",
            entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
    }
}

Wyjście

Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: USSocialSecurityNumber, entity subcategory: null, confidence score: 0.650000.

Dokumentacja referencyjna Więcej przykładów | Package (npm) | Kod źródłowy biblioteki |

Użyj tego przewodnika Szybki start, aby utworzyć aplikację do wykrywania danych osobowych (PII) z biblioteką klienta na potrzeby Node.js. W poniższym przykładzie utworzysz aplikację JavaScript, która może identyfikować rozpoznane poufne informacje w tekście.

Wymagania wstępne

Konfigurowanie

Tworzenie zmiennych środowiskowych

Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.

Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.

  • Aby ustawić zmienną LANGUAGE_KEY środowiskową, zastąp your-key element jednym z kluczy zasobu.
  • Aby ustawić zmienną LANGUAGE_ENDPOINT środowiskową, zastąp your-endpoint element punktem końcowym zasobu.

Ważne

Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.

Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Uwaga

Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set zamiast setx.

Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.

Tworzenie nowej aplikacji Node.js

W oknie konsoli (na przykład cmd, PowerShell lub Bash) utwórz nowy katalog dla aplikacji i przejdź do niego.

mkdir myapp 

cd myapp

Uruchom polecenie npm init, aby utworzyć aplikację Node przy użyciu pliku package.json.

npm init

Instalowanie biblioteki klienta

Zainstaluj pakiet npm:

npm install @azure/ai-text-analytics

Przykład kodu

Otwórz plik i skopiuj poniższy kod. Następnie uruchom kod.

"use strict";

const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");

// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;

//an example document for pii recognition
const documents = [ "The employee's phone number is (555) 555-5555." ];

async function main() {
    console.log(`PII recognition sample`);
  
    const client = new TextAnalyticsClient(endpoint, new AzureKeyCredential(key));
  
    const documents = ["My phone number is 555-555-5555"];
  
    const [result] = await client.analyze("PiiEntityRecognition", documents, "en");
  
    if (!result.error) {
      console.log(`Redacted text: "${result.redactedText}"`);
      console.log("Pii Entities: ");
      for (const entity of result.entities) {
        console.log(`\t- "${entity.text}" of type ${entity.category}`);
      }
    }
}

main().catch((err) => {
console.error("The sample encountered an error:", err);
});

Wyjście

PII recognition sample
Redacted text: "My phone number is ************"
Pii Entities:
        - "555-555-5555" of type PhoneNumber

Dokumentacja referencyjna Więcej przykładów | Package (PyPi) | Library source code |

Użyj tego przewodnika Szybki start, aby utworzyć aplikację do wykrywania danych osobowych (PII) z biblioteką klienta dla języka Python. W poniższym przykładzie utworzysz aplikację w języku Python, która będzie mogła identyfikować rozpoznane poufne informacje w tekście.

Wymagania wstępne

Konfigurowanie

Tworzenie zmiennych środowiskowych

Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.

Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.

  • Aby ustawić zmienną LANGUAGE_KEY środowiskową, zastąp your-key element jednym z kluczy zasobu.
  • Aby ustawić zmienną LANGUAGE_ENDPOINT środowiskową, zastąp your-endpoint element punktem końcowym zasobu.

Ważne

Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.

Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Uwaga

Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set zamiast setx.

Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.

Instalowanie biblioteki klienta

Po zainstalowaniu środowiska Python możesz zainstalować bibliotekę klienta przy użyciu następującego polecenia:

pip install azure-ai-textanalytics==5.2.0

Przykład kodu

Utwórz nowy plik języka Python i skopiuj poniższy kod. Następnie uruchom kod.

# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')

from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

# Authenticate the client using your key and endpoint 
def authenticate_client():
    ta_credential = AzureKeyCredential(language_key)
    text_analytics_client = TextAnalyticsClient(
            endpoint=language_endpoint, 
            credential=ta_credential)
    return text_analytics_client

client = authenticate_client()

# Example method for detecting sensitive information (PII) from text 
def pii_recognition_example(client):
    documents = [
        "The employee's SSN is 859-98-0987.",
        "The employee's phone number is 555-555-5555."
    ]
    response = client.recognize_pii_entities(documents, language="en")
    result = [doc for doc in response if not doc.is_error]
    for doc in result:
        print("Redacted Text: {}".format(doc.redacted_text))
        for entity in doc.entities:
            print("Entity: {}".format(entity.text))
            print("\tCategory: {}".format(entity.category))
            print("\tConfidence Score: {}".format(entity.confidence_score))
            print("\tOffset: {}".format(entity.offset))
            print("\tLength: {}".format(entity.length))
pii_recognition_example(client)

Wyjście

Redacted Text: The ********'s SSN is ***********.
Entity: employee
        Category: PersonType
        Confidence Score: 0.97
        Offset: 4
        Length: 8
Entity: 859-98-0987
        Category: USSocialSecurityNumber
        Confidence Score: 0.65
        Offset: 22
        Length: 11
Redacted Text: The ********'s phone number is ************.
Entity: employee
        Category: PersonType
        Confidence Score: 0.96
        Offset: 4
        Length: 8
Entity: 555-555-5555
        Category: PhoneNumber
        Confidence Score: 0.8
        Offset: 31
        Length: 12

Dokumentacja referencyjna

Skorzystaj z tego przewodnika Szybki start, aby wysyłać żądania wykrywania danych osobowych (PII) przy użyciu interfejsu API REST. W poniższym przykładzie użyjesz biblioteki cURL do identyfikowania rozpoznanych poufnych informacji w tekście.

Wymagania wstępne

Konfigurowanie

Tworzenie zmiennych środowiskowych

Aby wysyłać żądania interfejsu API, aplikacja musi być uwierzytelniona. W środowisku produkcyjnym należy użyć bezpiecznego sposobu przechowywania poświadczeń i uzyskiwania do nich dostępu. W tym przykładzie zostaną zapisane poświadczenia do zmiennych środowiskowych na komputerze lokalnym z uruchomioną aplikacją.

Aby ustawić zmienną środowiskową dla klucza zasobu Language, otwórz okno konsoli i postępuj zgodnie z instrukcjami dotyczącymi systemu operacyjnego i środowiska programistycznego.

  • Aby ustawić zmienną LANGUAGE_KEY środowiskową, zastąp your-key element jednym z kluczy zasobu.
  • Aby ustawić zmienną LANGUAGE_ENDPOINT środowiskową, zastąp your-endpoint element punktem końcowym zasobu.

Ważne

Jeśli używasz klucza interfejsu API, zapisz go bezpiecznie w innym miejscu, na przykład w usłudze Azure Key Vault. Nie dołączaj klucza interfejsu API bezpośrednio do kodu i nigdy nie publikuj go publicznie.

Aby uzyskać więcej informacji na temat zabezpieczeń usług sztucznej inteligencji, zobacz Uwierzytelnianie żądań w usługach Azure AI.

setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint

Uwaga

Jeśli musisz uzyskać dostęp tylko do zmiennych środowiskowych w bieżącej uruchomionej konsoli, możesz ustawić zmienną środowiskową z wartością set zamiast setx.

Po dodaniu zmiennych środowiskowych może być konieczne ponowne uruchomienie wszystkich uruchomionych programów, które będą musiały odczytać zmienne środowiskowe, w tym okno konsoli. Jeśli na przykład używasz programu Visual Studio jako edytora, uruchom ponownie program Visual Studio przed uruchomieniem przykładu.

Tworzenie pliku JSON z przykładową treścią żądania

W edytorze kodu utwórz nowy plik o nazwie test_pii_payload.json i skopiuj poniższy przykład JSON. To przykładowe żądanie zostanie wysłane do interfejsu API w następnym kroku.

{
    "kind": "PiiEntityRecognition",
    "parameters": {
        "modelVersion": "latest"
    },
    "analysisInput":{
        "documents":[
            {
                "id":"1",
                "language": "en",
                "text": "Call our office at 312-555-1234, or send an email to support@contoso.com"
            }
        ]
    }
}
'

Zapisz test_pii_payload.json gdzieś na komputerze. Na przykład pulpit.

Wysyłanie żądania interfejsu API wykrywania informacji osobistych (PII)

Użyj następujących poleceń, aby wysłać żądanie interfejsu API przy użyciu używanego programu. Skopiuj polecenie do terminalu i uruchom je.

parametr Opis
-X POST <endpoint> Określa punkt końcowy na potrzeby uzyskiwania dostępu do interfejsu API.
-H Content-Type: application/json Typ zawartości do wysyłania danych JSON.
-H "Ocp-Apim-Subscription-Key:<key> Określa klucz dostępu do interfejsu API.
-d <documents> Kod JSON zawierający dokumenty, które chcesz wysłać.

Zastąp C:\Users\<myaccount>\Desktop\test_pii_payload.json element lokalizacją przykładowego pliku żądania JSON utworzonego w poprzednim kroku.

Wiersz polecenia

curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"

PowerShell

curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"

Odpowiedź w formacie JSON

{
	"kind": "PiiEntityRecognitionResults",
	"results": {
		"documents": [{
			"redactedText": "Call our office at ************, or send an email to *******************",
			"id": "1",
			"entities": [{
				"text": "312-555-1234",
				"category": "PhoneNumber",
				"offset": 19,
				"length": 12,
				"confidenceScore": 0.8
			}, {
				"text": "support@contoso.com",
				"category": "Email",
				"offset": 53,
				"length": 19,
				"confidenceScore": 0.8
			}],
			"warnings": []
		}],
		"errors": [],
		"modelVersion": "2021-01-15"
	}
}

Czyszczenie zasobów

Jeśli chcesz wyczyścić i usunąć subskrypcję usług Azure AI, możesz usunąć zasób lub grupę zasobów. Usunięcie grupy zasobów powoduje również usunięcie wszelkich innych skojarzonych z nią zasobów.

Następne kroki