UnivariateDetectionOptions Class
The request of entire or last anomaly detection.
All required parameters must be populated in order to send to Azure.
- Inheritance
-
azure.ai.anomalydetector._model_base.ModelUnivariateDetectionOptions
Constructor
UnivariateDetectionOptions(*args: Any, **kwargs: Any)
Variables
Name | Description |
---|---|
series
|
Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. Required. |
granularity
|
Optional argument, can be one of yearly, monthly, weekly, daily, hourly, minutely, secondly, microsecond or none. If granularity is not present, it will be none by default. If granularity is none, the timestamp property in time series point can be absent. Known values are: "yearly", "monthly", "weekly", "daily", "hourly", "minutely", "secondly", "microsecond", and "none". |
custom_interval
|
Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}. |
period
|
Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically. |
max_anomaly_ratio
|
Optional argument, advanced model parameter, max anomaly ratio in a time series. |
sensitivity
|
Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted. |
impute_mode
|
str or
ImputeMode
Used to specify how to deal with missing values in the input series, it's used when granularity is not "none". Known values are: "auto", "previous", "linear", "fixed", "zero", and "notFill". |
impute_fixed_value
|
Used to specify the value to fill, it's used when granularity is not "none" and imputeMode is "fixed". |
Methods
clear | |
copy | |
get | |
items | |
keys | |
pop | |
popitem | |
setdefault | |
update | |
values |
clear
clear() -> None
copy
copy()
get
get(key: str, default: Any = None) -> Any
Parameters
Name | Description |
---|---|
key
Required
|
|
default
Required
|
Default value: None
|
items
items() -> ItemsView
keys
keys() -> KeysView
pop
pop(key: ~typing.Any, default: ~typing.Any = <object object>) -> Any
Parameters
Name | Description |
---|---|
key
Required
|
|
default
Required
|
|
popitem
popitem() -> Tuple[str, Any]
setdefault
setdefault(key: ~typing.Any, default: ~typing.Any = <object object>) -> Any
Parameters
Name | Description |
---|---|
key
Required
|
|
default
Required
|
|
update
update(*args: Any, **kwargs: Any) -> None
values
values() -> ValuesView
Attributes
custom_interval
Custom Interval is used to set non-standard time interval, for example, if the series is 5 minutes, request can be set as {"granularity":"minutely", "customInterval":5}.
custom_interval: int | None
granularity
Optional argument, can be one of yearly, monthly, weekly, daily, hourly, minutely, secondly, microsecond or none. If granularity is not present, it will be none by default. If granularity is none, the timestamp property in time series point can be absent. Known values are: "yearly", "monthly", "weekly", "daily", "hourly", "minutely", "secondly", "microsecond", and "none".
granularity: str | _models.TimeGranularity | None
impute_fixed_value
Used to specify the value to fill, it's used when granularity is not "none" and imputeMode is "fixed".
impute_fixed_value: float | None
impute_mode
Used to specify how to deal with missing values in the input series, it's used when granularity is not "none". Known values are: "auto", "previous", "linear", "fixed", "zero", and "notFill".
impute_mode: str | _models.ImputeMode | None
max_anomaly_ratio
Optional argument, advanced model parameter, max anomaly ratio in a time series.
max_anomaly_ratio: float | None
period
Optional argument, periodic value of a time series. If the value is null or does not present, the API will determine the period automatically.
period: int | None
sensitivity
Optional argument, advanced model parameter, between 0-99, the lower the value is, the larger the margin value will be which means less anomalies will be accepted.
sensitivity: int | None
series
Time series data points. Points should be sorted by timestamp in ascending order to match the anomaly detection result. If the data is not sorted correctly or there is duplicated timestamp, the API will not work. In such case, an error message will be returned. Required.
series: List[_models.TimeSeriesPoint]
Azure SDK for Python