Delen via


SUMMARIZE Function (DAX)

Returns a summary table for the requested totals over a set of groups.

Syntax

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[, <name>, <expression>]…)

Parameters

  • table
    Any DAX expression that returns a table of data.

  • groupBy_columnName
    (Optional) The qualified name of an existing column to be used to create summary groups based on the values found in it. This parameter cannot be an expression.

  • name
    The name given to a total or summarize column, enclosed in double quotes.

  • expression
    Any DAX expression that returns a single scalar value, where the expression is to be evaluated multiple times (for each row/context).

Return Value

A table with the selected columns for the groupBy_columnName arguments and the summarized columns designed by the name arguments.

Remarks

  1. Each column for which you define a name must have a corresponding expression; otherwise, an error is returned. The first argument, name, defines the name of the column in the results. The second argument, expression, defines the calculation performed to obtain the value for each row in that column.

  2. groupBy_columnName must be either in table or in a related table to table.

  3. Each name must be enclosed in double quotation marks.

  4. The function groups a selected set of rows into a set of summary rows by the values of one or more groupBy_columnName columns. One row is returned for each group.

Example

The following example returns a summary of the reseller sales grouped around the calendar year and the product category name, this result table allows you to do analysis over the reseller sales by year and product category.

SUMMARIZE(ResellerSales_USD
      , DateTime[CalendarYear]
      , ProductCategory[ProductCategoryName]
      , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
      , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
      )

The following table shows a preview of the data as it would be received by any function expecting to receive a table:

DateTime[CalendarYear]

ProductCategory[ProductCategoryName]

[Sales Amount (USD)]

[Discount Amount (USD)]

2008

Bikes

12968255.42

36167.6592

2005

Bikes

6958251.043

4231.1621

2006

Bikes

18901351.08

178175.8399

2007

Bikes

24256817.5

276065.992

2008

Components

2008052.706

39.9266

2005

Components

574256.9865

0

2006

Components

3428213.05

948.7674

2007

Components

5195315.216

4226.0444

2008

Clothing

366507.844

4151.1235

2005

Clothing

31851.1628

90.9593

2006

Clothing

455730.9729

4233.039

2007

Clothing

815853.2868

12489.3835

2008

Accessories

153299.924

865.5945

2005

Accessories

18594.4782

4.293

2006

Accessories

86612.7463

1061.4872

2007

Accessories

275794.8403

4756.6546

Advanced SUMMARIZE options

SUMMARIZE with ROLLUP

The addition of the ROLLUP() syntax modifies the behavior of the SUMMARIZE function by adding roll-up rows to the result on the groupBy_columnName columns.

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[, ROLLUP(<groupBy_columnName>[,< groupBy_columnName>…])][, <name>, <expression>]…)

ROLLUP parameters

  • groupBy_columnName
    The qualified name of an existing column to be used to create summary groups based on the values found in it. This parameter cannot be an expression.

Note: All other SUMMARIZE parameters are explained before and not repeated here for brevity.

Remarks

  • The columns mentioned in the ROLLUP expression cannot be referenced as part of a groupBy_columnName columns.

Example

The following example adds roll-up rows to the Group-By columns of the SUMMARIZE function call.

SUMMARIZE(ResellerSales_USD
      , ROLLUP( DateTime[CalendarYear], ProductCategory[ProductCategoryName])
      , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
      , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
)

The following table shows a preview of the data as it would be received by any function expecting to receive a table:

DateTime[CalendarYear]

ProductCategory[ProductCategoryName]

[Sales Amount (USD)]

[Discount Amount (USD)]

2008

Bikes

12968255.42

36167.6592

2005

Bikes

6958251.043

4231.1621

2006

Bikes

18901351.08

178175.8399

2007

Bikes

24256817.5

276065.992

2008

Components

2008052.706

39.9266

2005

Components

574256.9865

0

2006

Components

3428213.05

948.7674

2007

Components

5195315.216

4226.0444

2008

Clothing

366507.844

4151.1235

2005

Clothing

31851.1628

90.9593

2006

Clothing

455730.9729

4233.039

2007

Clothing

815853.2868

12489.3835

2008

Accessories

153299.924

865.5945

2005

Accessories

18594.4782

4.293

2006

Accessories

86612.7463

1061.4872

2007

Accessories

275794.8403

4756.6546

2008

15496115.89

41224.3038

2005

7582953.67

4326.4144

2006

22871907.85

184419.1335

2007

30543780.84

297538.0745

76494758.25

527507.9262

ROLLUPGROUP

ROLLUPGROUP() can be used to calculate groups of subtotals. If used in-place of ROLLUP, ROLLUPGROUP will yield the same result by adding roll-up rows to the result on the groupBy_columnName columns. However, the addition of ROLLUPGROUP() inside a ROLLUP syntax can be used to prevent partial subtotals in roll-up rows.

The following example shows only the grand total of all years and categories without the subtotal of each year with all categories:

SUMMARIZE(ResellerSales_USD
      , ROLLUP(ROLLUPGROUP( DateTime[CalendarYear], ProductCategory[ProductCategoryName]))
      , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
      , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
)

The following table shows a preview of the data as it would be received by any function expecting to receive a table:

DateTime[CalendarYear]

ProductCategory[ProductCategoryName]

[Sales Amount (USD)]

[Discount Amount (USD)]

2008

Bikes

12968255.42

36167.6592

2005

Bikes

6958251.043

4231.1621

2006

Bikes

18901351.08

178175.8399

2007

Bikes

24256817.5

276065.992

2008

Components

2008052.706

39.9266

2005

Components

574256.9865

0

2006

Components

3428213.05

948.7674

2007

Components

5195315.216

4226.0444

2008

Clothing

366507.844

4151.1235

2005

Clothing

31851.1628

90.9593

2006

Clothing

455730.9729

4233.039

2007

Clothing

815853.2868

12489.3835

2008

Accessories

153299.924

865.5945

2005

Accessories

18594.4782

4.293

2006

Accessories

86612.7463

1061.4872

2007

Accessories

275794.8403

4756.6546

76494758.25

527507.9262

SUMMARIZE with ISSUBTOTAL

Enables the user to create another column, in the Summarize function, that returns True if the row contains sub-total values for the column given as argument to ISSUBTOTAL, otherwise returns False.

SUMMARIZE(<table>, <groupBy_columnName>[, <groupBy_columnName>]…[, ROLLUP(<groupBy_columnName>[,< groupBy_columnName>…])][, <name>, {<expression>|ISSUBTOTAL(<columnName>)}]…)

ISSUBTOTAL parameters

  • columnName
    The name of any column in table of the SUMMARIZE function or any column in a related table to table.

Return Value

A True value if the row contains a sub-total value for the column given as argument, otherwise returns False

Remarks

  • ISSUBTOTAL can only be used in the expression part of a SUMMARIZE function.

  • ISSUBTOTAL must be preceded by a matching name column.

Example

The following sample generates an ISSUBTOTAL() column for each of the ROLLUP() columns in the given SUMMARIZE() function call.

SUMMARIZE(ResellerSales_USD
      , ROLLUP( DateTime[CalendarYear], ProductCategory[ProductCategoryName])
      , "Sales Amount (USD)", SUM(ResellerSales_USD[SalesAmount_USD])
      , "Discount Amount (USD)", SUM(ResellerSales_USD[DiscountAmount])
      , "Is Sub Total for DateTimeCalendarYear", ISSUBTOTAL(DateTime[CalendarYear])
      , "Is Sub Total for ProductCategoryName", ISSUBTOTAL(ProductCategory[ProductCategoryName])
)

The following table shows a preview of the data as it would be received by any function expecting to receive a table:

[Is Sub Total for DateTimeCalendarYear]

[Is Sub Total for ProductCategoryName]

DateTime[CalendarYear]

ProductCategory[ProductCategoryName]

[Sales Amount (USD)]

[Discount Amount (USD)]

FALSE

FALSE

FALSE

FALSE

2008

Bikes

12968255.42

36167.6592

FALSE

FALSE

2005

Bikes

6958251.043

4231.1621

FALSE

FALSE

2006

Bikes

18901351.08

178175.8399

FALSE

FALSE

2007

Bikes

24256817.5

276065.992

FALSE

FALSE

2008

Components

2008052.706

39.9266

FALSE

FALSE

2005

Components

574256.9865

0

FALSE

FALSE

2006

Components

3428213.05

948.7674

FALSE

FALSE

2007

Components

5195315.216

4226.0444

FALSE

FALSE

2008

Clothing

366507.844

4151.1235

FALSE

FALSE

2005

Clothing

31851.1628

90.9593

FALSE

FALSE

2006

Clothing

455730.9729

4233.039

FALSE

FALSE

2007

Clothing

815853.2868

12489.3835

FALSE

FALSE

2008

Accessories

153299.924

865.5945

FALSE

FALSE

2005

Accessories

18594.4782

4.293

FALSE

FALSE

2006

Accessories

86612.7463

1061.4872

FALSE

FALSE

2007

Accessories

275794.8403

4756.6546

FALSE

TRUE

FALSE

TRUE

2008

15496115.89

41224.3038

FALSE

TRUE

2005

7582953.67

4326.4144

FALSE

TRUE

2006

22871907.85

184419.1335

FALSE

TRUE

2007

30543780.84

297538.0745

TRUE

TRUE

76494758.25

527507.9262