Delen via


ONNX-deductie in Spark

In dit voorbeeld traint u een LightGBM-model en converteert u het model naar de ONNX-indeling . Nadat het model is geconverteerd, gebruikt u het model om enkele testgegevens in Spark af te leiden.

In dit voorbeeld worden de volgende Python-pakketten en -versies gebruikt:

  • onnxmltools==1.7.0
  • lightgbm==3.2.1

Vereisten

  • Koppel uw notitieblok aan een lakehouse. Selecteer aan de linkerkant Toevoegen om een bestaand lakehouse toe te voegen of een lakehouse te maken.
  • Mogelijk moet u installeren onnxmltools door een codecel toe te voegen !pip install onnxmltools==1.7.0 en vervolgens de cel uit te voeren.

De voorbeeldgegevens laden

Als u de voorbeeldgegevens wilt laden, voegt u de volgende codevoorbeelden toe aan cellen in uw notebook en voert u vervolgens de cellen uit:

from pyspark.sql import SparkSession

# Bootstrap Spark Session
spark = SparkSession.builder.getOrCreate()

from synapse.ml.core.platform import *
df = (
    spark.read.format("csv")
    .option("header", True)
    .option("inferSchema", True)
    .load(
        "wasbs://publicwasb@mmlspark.blob.core.windows.net/company_bankruptcy_prediction_data.csv"
    )
)

display(df)

De uitvoer moet er ongeveer uitzien als in de volgende tabel, hoewel de waarden en het aantal rijen kunnen verschillen:

Rentedekkingsverhouding Vlag netto-inkomsten Eigen vermogen tot aansprakelijkheid
0.5641 1.0 0.0165
0.5702 1.0 0.0208
0.5673 1.0 0.0165

LightGBM gebruiken om een model te trainen

from pyspark.ml.feature import VectorAssembler
from synapse.ml.lightgbm import LightGBMClassifier

feature_cols = df.columns[1:]
featurizer = VectorAssembler(inputCols=feature_cols, outputCol="features")

train_data = featurizer.transform(df)["Bankrupt?", "features"]

model = (
    LightGBMClassifier(featuresCol="features", labelCol="Bankrupt?", dataTransferMode="bulk")
    .setEarlyStoppingRound(300)
    .setLambdaL1(0.5)
    .setNumIterations(1000)
    .setNumThreads(-1)
    .setMaxDeltaStep(0.5)
    .setNumLeaves(31)
    .setMaxDepth(-1)
    .setBaggingFraction(0.7)
    .setFeatureFraction(0.7)
    .setBaggingFreq(2)
    .setObjective("binary")
    .setIsUnbalance(True)
    .setMinSumHessianInLeaf(20)
    .setMinGainToSplit(0.01)
)

model = model.fit(train_data)

Het model converteren naar ONNX-indeling

De volgende code exporteert het getrainde model naar een LightGBM booster en converteert het vervolgens naar de ONNX-indeling:

import lightgbm as lgb
from lightgbm import Booster, LGBMClassifier


def convertModel(lgbm_model: LGBMClassifier or Booster, input_size: int) -> bytes:
    from onnxmltools.convert import convert_lightgbm
    from onnxconverter_common.data_types import FloatTensorType

    initial_types = [("input", FloatTensorType([-1, input_size]))]
    onnx_model = convert_lightgbm(
        lgbm_model, initial_types=initial_types, target_opset=9
    )
    return onnx_model.SerializeToString()


booster_model_str = model.getLightGBMBooster().modelStr().get()
booster = lgb.Booster(model_str=booster_model_str)
model_payload_ml = convertModel(booster, len(feature_cols))

Na de conversie laadt u de ONNX-nettolading in een ONNXModel en inspecteert u de invoer en uitvoer van het model:

from synapse.ml.onnx import ONNXModel

onnx_ml = ONNXModel().setModelPayload(model_payload_ml)

print("Model inputs:" + str(onnx_ml.getModelInputs()))
print("Model outputs:" + str(onnx_ml.getModelOutputs()))

Wijs de modelinvoer toe aan de kolomnaam van het invoerdataframe (FeedDict) en wijs de kolomnamen van het uitvoergegevensframe toe aan de modeluitvoer (FetchDict).

onnx_ml = (
    onnx_ml.setDeviceType("CPU")
    .setFeedDict({"input": "features"})
    .setFetchDict({"probability": "probabilities", "prediction": "label"})
    .setMiniBatchSize(5000)
)

Het model gebruiken voor deductie

Als u deductie met het model wilt uitvoeren, maakt de volgende code testgegevens en transformeert u de gegevens via het ONNX-model.

from pyspark.ml.feature import VectorAssembler
import pandas as pd
import numpy as np

n = 1000 * 1000
m = 95
test = np.random.rand(n, m)
testPdf = pd.DataFrame(test)
cols = list(map(str, testPdf.columns))
testDf = spark.createDataFrame(testPdf)
testDf = testDf.union(testDf).repartition(200)
testDf = (
    VectorAssembler()
    .setInputCols(cols)
    .setOutputCol("features")
    .transform(testDf)
    .drop(*cols)
    .cache()
)

display(onnx_ml.transform(testDf))

De uitvoer moet er ongeveer uitzien als in de volgende tabel, hoewel de waarden en het aantal rijen kunnen verschillen:

Index Functies Voorspelling Waarschijnlijkheid
1 "{"type":1,"values":[0.105... 0 "{"0":0.835...
2 "{"type":1,"values":[0.814... 0 "{"0":0.658...