SKU-lijst met beheerde online-eindpunten
In de volgende tabel ziet u de voorraadeenheden (SKU's) van virtuele machines (VM's) die worden ondersteund voor door Azure Machine Learning beheerde online-eindpunten. Elke SKU is een unieke alfanumerieke code die is toegewezen aan een bepaalde VIRTUELE machine die kan worden aangeschaft.
De volledige SKU-namen die in de tabel worden vermeld, kunnen worden gebruikt voor Azure CLI- of Azure Resource Manager-sjablonen (ARM-sjablonen) om implementaties te maken en bij te werken.
Zie Prijzen en VM-grootten van Azure Machine Learning voor meer informatie over configuratiedetails, zoals CPU en RAM.
Achternaam | Naam van VM-grootte | Ondersteunt Infiniband | Architectuur | numberOfGPUs | numberOfCores | 20% reservering overslaan |
---|---|---|---|---|---|---|
standardDASv4Family | STANDARD_D2AS_V4 | - | CPU | 0 | 2 | - |
standardDASv4Family | STANDARD_D4AS_V4 | - | CPU | 0 | 4 | - |
standardDASv4Family | STANDARD_D8AS_V4 | - | CPU | 0 | 8 | - |
standardDASv4Family | STANDARD_D16AS_V4 | - | CPU | 0 | 16 | - |
standardDASv4Family | STANDARD_D32AS_V4 | - | CPU | 0 | 32 | - |
standardDASv4Family | STANDARD_D48AS_V4 | - | CPU | 0 | 48 | - |
standardDASv4Family | STANDARD_D64AS_V4 | - | CPU | 0 | 64 | - |
standardDASv4Family | STANDARD_D96AS_V4 | - | CPU | 0 | 96 | - |
standardDAv4Family | STANDARD_D2A_V4 | - | CPU | 0 | 2 | - |
standardDAv4Family | STANDARD_D4A_V4 | - | CPU | 0 | 4 | - |
standardDAv4Family | STANDARD_D8A_V4 | - | CPU | 0 | 8 | - |
standardDAv4Family | STANDARD_D16A_V4 | - | CPU | 0 | 16 | - |
standardDAv4Family | STANDARD_D32A_V4 | - | CPU | 0 | 32 | - |
standardDAv4Family | STANDARD_D48A_V4 | - | CPU | 0 | 48 | - |
standardDAv4Family | STANDARD_D64A_V4 | - | CPU | 0 | 64 | - |
standardDAv4Family | STANDARD_D96A_V4 | - | CPU | 0 | 96 | - |
standardDSv2Family | STANDARD_DS1_V2 | - | CPU | 0 | 1 | - |
standardDSv2Family | STANDARD_DS2_V2 | - | CPU | 0 | 2 | - |
standardDSv2Family | STANDARD_DS3_V2 | - | CPU | 0 | 4 | - |
standardDSv2Family | STANDARD_DS4_V2 | - | CPU | 0 | 8 | - |
standardDSv2Family | STANDARD_DS5_V2 | - | CPU | 0 | 16 | - |
standardESv3Family | STANDARD_E2S_V3 | - | CPU | 0 | 2 | - |
standardESv3Family | STANDARD_E4S_V3 | - | CPU | 0 | 4 | - |
standardESv3Family | STANDARD_E8S_V3 | - | CPU | 0 | 8 | - |
standardESv3Family | STANDARD_E16S_V3 | - | CPU | 0 | 16 | - |
standardESv3Family | STANDARD_E32S_V3 | - | CPU | 0 | 32 | - |
standardESv3Family | STANDARD_E48S_V3 | - | CPU | 0 | 48 | - |
standardESv3Family | STANDARD_E64S_V3 | - | CPU | 0 | 64 | - |
standardFSv2Family | STANDARD_F2S_V2 | - | CPU | 0 | 2 | - |
standardFSv2Family | STANDARD_F4S_V2 | - | CPU | 0 | 4 | - |
standardFSv2Family | STANDARD_F8S_V2 | - | CPU | 0 | 8 | - |
standardFSv2Family | STANDARD_F16S_V2 | - | CPU | 0 | 16 | - |
standardFSv2Family | STANDARD_F32S_V2 | - | CPU | 0 | 32 | - |
standardFSv2Family | STANDARD_F48S_V2 | - | CPU | 0 | 48 | - |
standardFSv2Family | STANDARD_F64S_V2 | - | CPU | 0 | 64 | - |
standardFSv2Family | STANDARD_F72S_V2 | - | CPU | 0 | 72 | - |
standardFXMDVSFamily | STANDARD_FX4MDS | - | CPU | 0 | 4 | - |
standardFXMDVSFamily | STANDARD_FX12MDS | - | CPU | 0 | 12 | - |
standardFXMDVSFamily | STANDARD_FX24MDS | - | CPU | 0 | 24 | - |
standardFXMDVSFamily | STANDARD_FX36MDS | - | CPU | 0 | 36 | - |
standardFXMDVSFamily | STANDARD_FX48MDS | - | CPU | 0 | 48 | - |
standardLASv3Family | STANDARD_L8AS_V3 | - | CPU | 0 | 8 | - |
standardLASv3Family | STANDARD_L16AS_V3 | - | CPU | 0 | 16 | - |
standardLASv3Family | STANDARD_L32AS_V3 | - | CPU | 0 | 32 | - |
standardLASv3Family | STANDARD_L48AS_V3 | - | CPU | 0 | 48 | - |
standardLASv3Family | STANDARD_L64AS_V3 | - | CPU | 0 | 64 | - |
standardLASv3Family | STANDARD_L80AS_V3 | - | CPU | 0 | 80 | - |
standardLSv2Family | STANDARD_L8S_V2 | - | CPU | 0 | 8 | - |
standardLSv2Family | STANDARD_L16S_V2 | - | CPU | 0 | 16 | - |
standardLSv2Family | STANDARD_L32S_V2 | - | CPU | 0 | 32 | - |
standardLSv2Family | STANDARD_L48S_V2 | - | CPU | 0 | 48 | - |
standardLSv2Family | STANDARD_L64S_V2 | - | CPU | 0 | 64 | - |
standardLSv2Family | STANDARD_L80S_V2 | - | CPU | 0 | 80 | - |
standardLSv3Family | STANDARD_L8S_V3 | - | CPU | 0 | 8 | - |
standardLSv3Family | STANDARD_L16S_V3 | - | CPU | 0 | 16 | - |
standardLSv3Family | STANDARD_L32S_V3 | - | CPU | 0 | 32 | - |
standardLSv3Family | STANDARD_L48S_V3 | - | CPU | 0 | 48 | - |
standardLSv3Family | STANDARD_L64S_V3 | - | CPU | 0 | 64 | - |
standardLSv3Family | STANDARD_L80S_V3 | - | CPU | 0 | 80 | - |
standardNCADSA100v4Family | STANDARD_NC24ADS_A100_V4 | - | NvidiaGpu | 1 | 24 | Ja |
standardNCADSA100v4Family | STANDARD_NC48ADS_A100_V4 | - | NvidiaGpu | 2 | 48 | Ja |
standardNCADSA100v4Family | STANDARD_NC96ADS_A100_V4 | - | NvidiaGpu | 4 | 96 | Ja |
Standard NCASv3_T4 Family | STANDARD_NC4AS_T4_V3 | - | NvidiaGpu | 1 | 4 | - |
Standard NCASv3_T4 Family | STANDARD_NC8AS_T4_V3 | - | NvidiaGpu | 1 | 8 | - |
Standard NCASv3_T4 Family | STANDARD_NC16AS_T4_V3 | - | NvidiaGpu | 1 | 16 | - |
Standard NCASv3_T4 Family | STANDARD_NC64AS_T4_V3 | - | NvidiaGpu | 4 | 64 | - |
standardNCSv2Family | STANDARD_NC6S_V2 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv2Family | STANDARD_NC12S_V2 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv2Family | STANDARD_NC24S_V2 | - | NvidiaGpu | 4 | 24 | - |
standardNCSv3Family | STANDARD_NC6S_V3 | - | NvidiaGpu | 1 | 6 | - |
standardNCSv3Family | STANDARD_NC12S_V3 | - | NvidiaGpu | 2 | 12 | - |
standardNCSv3Family | STANDARD_NC24S_V3 | - | NvidiaGpu | 4 | 24 | - |
standardNCADSH100v5Family | STANDARD_NC40ADS_H100_V5 | - | NvidiaGpu | 1 | 40 | Ja |
standardNCADSH100v5Family | STANDARD_NC80ADIS_H100_V5 | - | NvidiaGpu | 2 | 80 | Ja |
standaard NDAMSv4_A100Family | STANDARD_ND96AMSR_A100_V4 | Ja | NvidiaGpu | 8 | 96 | Ja |
Standard NDASv4_A100 Family | STANDARD_ND96ASR_V4 | Ja | NvidiaGpu | 8 | 96 | Ja |
standardNDSv2Family | STANDARD_ND40RS_V2 | Ja | NvidiaGpu | 8 | 40 | Ja |
standardNDv5H100Family | STANDARD_ND96IS_H100_v5 | - | NvidiaGpu | 8 | 96 | Ja |
standardNDv5H100Family | STANDARD_ND96ISR_H100_v5 | Ja | NvidiaGpu | 8 | 96 | Ja |
Let op
Kleine VM-SKU's, zoals Standard_DS1_v2
en Standard_F2s_v2
zijn mogelijk te klein voor grotere modellen en kunnen leiden tot containerbeƫindiging vanwege onvoldoende geheugen, onvoldoende ruimte op de schijf of een testfout omdat het te lang duurt om de container te initiƫren. Als u OutOfQuota-fouten of ReourceNotReady-fouten ondervindt, kunt u grotere VM-SKU's proberen. Als u de kosten voor het implementeren van meerdere modellen met een beheerd online-eindpunt wilt verlagen, raadpleegt u Implementatie voor verschillende lokale modellen.
Notitie
We raden u aan meer dan drie exemplaren te gebruiken voor implementaties in productiescenario's. Daarnaast reserveert Azure Machine Learning 20% van uw rekenresources voor het uitvoeren van upgrades op sommige VM-SKU's, zoals beschreven in quotumtoewijzing voor virtuele machines voor implementatie. VM-SKU's die zijn uitgesloten van deze extra quotumreservering, worden opgegeven in de kolom '20% reservering overslaan'.