< databricks

Best practices for building an integration
with Databricks

Authors : Databricks Technology Partner Team
Last updated : May 8, 2024

Introduction 4
Guided workflows for Technology Partner’s building integrations with Databricks 4
Introduction 4
What next : Available programs 5
1. Partner Connect 6

2. Marketplace 7

3. Lakehouse Apps 8

4. Built On 8
Reference for key terminologies 9
Databricks Account 9
Workspace 9

User 9

Service principal 9

Unity Catalog 9

Unity Catalog object model 9

Catalog 10

Schema 10

Table 10
Integrating with Databricks: Available api’s . connectors and sdk’s 10
SQL connectors for Databricks 13
Databricks Connect (aka DbConnect) 13
Databricks Jobs 13
Examples of integration mechanism to use 14
Recommendations based on product categories 15
Ingest, CDC, Streaming Ingest, Data Replication 15
Transformation, ETL, Data prep 18
Visual low code data prep 18
Monitoring & Observability 18

Bl and Visualization 18
Security 18

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential

< databricks

Data Science, ML and Al 18
REST API best practices 18
Designing the Ul for the Databricks connector 19
Connection details 20
Authentication 20
Advanced Configurations 21
Integration checklist - Ingesting data into Databricks 22
Table creation and Unity Catalog metadata 22
Table and Column properties 22
To set a comment on an existing table 23
To set a comment on the column for an existing tables 23
Requirements around order of columns as you create table 23
Setting primary and foreign key metadata 23
Generated columns in Delta 24
Handling identity columns and surrogate keys 24
Enabling Deletion Vectors 25
Resources: Table creation and data types 25
Managed vs external tables 25
Managed Delta tables 25
External tables 26
Ingest newly arriving data with no updates 27
Using SQL “copy into” 28
Using Delta Live Tables (DLT) 29
Using Streaming tables 29
Merge : Best practices for performance optimization 29
Ingesting data using Delta Live Table (DLT) 31
Limitations 31
Resources 31
System Limits 32
Scalability Guidelines 32
DLT workshop qit repo https://github.com/ddubeau/DLT-hands-on-workshop 32
Examples of a DLT pipeline with Auto Loader 32

1. Load a notebook via Api using Basic Authentication (see Authentication for
Databricks automation for additional information) 32
2. Create a DLT Pipeline 33
3. Start a DLT pipeline 33
SQL “Copy Into” best practices 33
Using AWS STS and SSE-C encryption with “Copy Into” 33
STS authentication 34

© 2023, Databricks Inc., All Rights Reserved.

Databricks Confidential

< databricks

SSE-C encryption 34

User Agent Tag Prerequisite for all Integrations 36
Passing HTTP User Agent Tag for REST API’s 36
Passing User Agent Tag for ODBC/JDBC 36
Example 1 : Sample code from Tableau connector 37
Example 2 : To set the user agent for JDBC in Java 38
Example 3: To set the user agent for JDBC as part of the JDBC URI 38
Passing User Agent as a cluster config 38
Passing user agent tag for Databricks SQL Connectors 39
Passing user agent tag for Databricks Connect 39
Using Databricks Connectors 39
Canceling queries and passing user agent 39
Go connector 39
Node.js connector 39
Python connector 40
JDBC 40
ODBC 41
Data science, ML & Al Integrations 42
Integrating with Foundational Model API's / LLM’s on Databricks 42
What are foundation models? 42
What are Databricks Foundation Model APIs? 42
Query foundational models 43
Query provisioned throughput endpoint 43
Query models on databricks using SQL 44
SQL ai_guery() function 44

SQL Al functions 46

REST API : Get details on serving endpoints 46
Integrating with Databricks Vector Search 47
What is Databricks Vector Search? 47
Query a Vector Search endpoint 47
Models in Unity Catalog 48
Getting started with models in unity catalog 48
Registering a MLflow Model to Databricks 48
Downloading a MLflow Model from Databricks 49
Monitoring LLM’s and Models on Databricks 49
Inference Tables 49
Handling Images 50
Guidance based on product category 52
Data Labeling and Generation (Human & Synthetic) 52

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential

< databricks

Natural Language Processing 53

Model Training Tools or Model hubs 53

Reference Blogs and links 54

Data Sharing - Delta Sharing 55

Sharing via SQL 56

Sharing via REST API 56

Sharing via Delta Sharing 57

As a Provider 57

As a Consumer 57

OAuth - ISV product integration best practices 58

UC Volumes based staging locations - ISV product integration best practices 58

UC personal staging locations [Deprecated] - ISV product integration best practices 58

Governance & Observability 58

Resources 59

Resources around Delta and Databricks SQL 59

Quickstarts around Clusters 59

Cluster log delivery 60

Setting log level 60

FAQ 61
Introduction

This document is a best practices guide for ISV and Technology partner products to integrate with
Databricks.

It includes guidance on choosing appropriate architecture, APls & compute for integration and using the

Databricks APIs in accordance with best practices.
Designing a Databricks integration involves the following high level steps:

e Create a Databricks account and a workspace on AWS, Azure or GCP
o Create your Databricks account. Link
o Create a unity catalog enabled Databricks Workspace. Link to docs on AWS, Azure,
GCP
e Based on product category or integration use cases
o Identify appropriate Databricks APl / SDK/ connector to use for building the integration
o Use this document to learn best practices for integrating with Databricks

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential

https://www.databricks.com/try-databricks#account
https://docs.databricks.com/data-governance/unity-catalog/get-started.html
https://learn.microsoft.com/en-us/azure/databricks/data-governance/unity-catalog/get-started
https://docs.gcp.databricks.com/data-governance/unity-catalog/get-started.html

< databricks

e Ensure user-agent and telemetry metadata is passed on all Databricks API calls

Guided workflows for Technology Partner’s building
integrations with Databricks

Introduction

Technology partners and Independent software vendors (ISVs) build integrations to connect
their products and services to Databricks Lakehouse platform. This can be done through a
variety of methods such as jobs, api’'s, connectors, sdk’s and others.

What next : Available programs

Once an integration has been built and validated by the Technology Partner team, you are
eligible to participate in one or more of the following programs.
e Technology partnership
o Partner Connect
Built On
Data partnership
o Marketplace
e Lakehouse Apps

Based on the technology partner’s product’s functionality and integration with Databricks, below
illustrates at a high level the programs the partner product is eligible to.

Let's take an example of an ISV product that focuses on ELT / Ingest / Transform. They would
likely use one of Databricks connectors or sdk’s to push their jobs as SQL and use a Databricks
SQL warehouse for compute. Depending on how the product is architected, they could be
eligible to participate in partner connect, lakehouse apps and built-on.

Databricks Confidential

< databricks

ISV Integration with Databricks

cevciane Share data, You are a
Databricks 2
compute (sg, mi notebooks, ML data provider or
i Gl models and other provider of ML
jobs, apis,
data products models
other)
Yes o
Run on container
in Databricks Yes
Yes
Yes
Yes
Yes
Partner Lakehouse VT
Connect Apps PiaE

1. Partner Connect

Use
Databricks as part
of product

Yes

Built On

Create
& manage
Databricks
workspaces for
customers, in your
account

Partner Connect allows customers/users to connect their Databricks workspace to
partner solutions from the Databricks Ul. This gives customers/users the ability to try out
partner solutions using their data in the Databricks Lakehouse, and then adopt the

solutions that best meet your business needs.

Partner Connect provides a simpler alternative to manual partner connections, by
provisioning the required Databricks resources on their behalf and passing resource

details to the partner. Not all Databricks partner solutions are featured in Partner

Connect.
e Partner Connect | Databricks

e APl requirements: GitHub - databrickslabs/partner-connect-api

Databricks Confidential

https://www.databricks.com/partnerconnect
https://github.com/databrickslabs/partner-connect-api

< databricks

ISV partner products that typically fall under this program include : ingest, transform, ETL,
reverse ETL, B, visualization, monitoring, semantic layer, governance, security, data science &
ml/ai, and others.

Pre-requisites
a.
b.
C.

Integrate with Databricks Unity Catalog
Have a SaaS based trial experience for the ISV product
Leverage Databricks compute by executing jobs, push down sql/python/scala
workloads, ml/miflow integrations, call Model Serving endpoints, calling
Databricks apis, etc.
This is invite only. Work with your Databricks Partner Development Manager on
the eligibility, requirements and next steps.

i. Have “X” joint customers using the integration.

2. Marketplace

Databricks Marketplace is an open marketplace for data products, including datasets,
notebooks, machine learning models, and more. It allows data providers to share data
products securely, and data consumers to explore and expand their access to the data
and data services they need.

Data products in the Marketplace are powered by the open-source Delta Sharing
standard, which ensures that data is shared securely and reliably.

Data products in Databricks Marketplace can be either public or private. Public data
products are available to anyone with a Databricks account, while private data products
are only available to members of a specific private exchange.

Databricks Marketplace

Introducing Databricks Marketplace., an Open Marketplace for Data Solutions -
The Databricks Blog

Documentation: What is Databricks Marketplace?
https://marketplace.databricks.com/

ISV partner products who typically fall under this program: share data, notebooks, ML models or

data products.

Prerequisites

Databricks Confidential

https://www.databricks.com/product/marketplace
https://www.databricks.com/blog/2022/06/28/introducing-databricks-marketplace-an-open-marketplace-for-all-data-and-ai-assets.html
https://www.databricks.com/blog/2022/06/28/introducing-databricks-marketplace-an-open-marketplace-for-all-data-and-ai-assets.html
https://docs.databricks.com/marketplace/index.html

< databricks

a. Use Delta Sharing
b. Integrate with Databricks Unity Catalog
c. Share data, notebooks, ML models or data products

3. Lakehouse Apps

Lakehouse Apps are a new way to build, distribute, and run innovative data and Al
applications directly on the Databricks Lakehouse Platform. Lakehouse Apps are built
with the technology of your choice. Apps run on secure, auto-scale compute that runs
containerized code that can be written in virtually any language, so developers are not
limited to building in any specific framework.

Lakehouse Apps are fully integrated with the Databricks Lakehouse Platform, so they
can access all of your data, leverage all of the Databricks services, and be managed and

governed using the same tools and processes as your other Databricks workloads.

Lakehouse Apps can be distributed through the Databricks Marketplace, so they can be
easily discovered and adopted by other Databricks users.

e Introducing Lakehouse Apps | Databricks Blog

Prerequisites
a. Any ISV product that has integration with Databricks
b. Invite only
c. Coming soon
d. Run on containers

4. Built On

The Databricks Built On program is a great way for independent software vendors (ISVs)
to build and deliver reliable, scalable, and secure data and Al solutions. ISVs can build
their applications or products on top of the Databricks Lakehouse Platform, which means
that the ISV product is leveraging Databricks as part of its core product.

Databricks Confidential

https://www.databricks.com/blog/introducing-lakehouse-apps

< databricks

Reference for key terminologies

Databricks Account

o A Databricks account is a top-level entity that represents a user or organization.
A Databricks account represents a single entity that can include multiple workspaces.
Accounts enabled for Unity Catalog can be used to manage users and their access to
data centrally across all of the workspaces in the account. Billing and support are also
handled at the account level.

o (etting started guide for Databricks account and workspace

Workspace

o InDatabricks, a workspace is a Databricks deployment in the cloud that functions as
an environment for your team to access Databricks assets. Your organization can
choose to have either multiple workspaces or just one, depending on its needs.

User

o Part of the Databricks identity management model. User identities recognized by
Databricks and represented by email addresses.

Service principal

o Partof the Databricks identity management model. Identities for use with jobs,
automated tools, and systems such as scripts, apps, and CI/CD platforms.

Unity Catalog

o Unity Catalog provides centralized access control, auditing, lineage, and data
discovery capabilities across Databricks workspaces.

o Getting started guide for Databricks Unity Catalog. [RECOMMENDED] Use this guide to
setup your workspace powered by Databricks Unity Catalog

Unity Catalog object model

o In Unity Catalog, the hierarchy of primary data objects flows from metastore to table
or volume

o The hierarchy of primary data objects in Unity Catalog. See graph below: Link to doc
around Unity Catalog object model.

Databricks Confidential

https://docs.databricks.com/getting-started/index.html
https://docs.databricks.com/administration-guide/users-groups/index.html
https://docs.databricks.com/administration-guide/users-groups/index.html
https://docs.databricks.com/data-governance/unity-catalog/get-started.html
https://docs.databricks.com/data-governance/unity-catalog/index.html#the-unity-catalog-object-model
https://docs.databricks.com/data-governance/unity-catalog/index.html#the-unity-catalog-object-model

< databricks

Metastore
Storage therlnal Catalog | : Share : Recipient : Provider Connection :
credential : : location 3 3 : _ :
Schema
Table View Volume | i Function | : Model

Catalog
o Partof the Unity Catalog object model. The first layer of the object hierarchy, used to
organize your data assets(for example Schemas, Tables, and Volumes)
Schema
o Part of the Unity Catalog object model. Also known as databases, schemas are the
second layer of the object hierarchy and contain tables and views.
Table

o Part of the Unity Catalog object model. A table resides in the third layer of Unity
Catalog's three-level namespace. It contains rows of data.

Integrating with Databricks: Available api’s , connectors and sdk’s

Databricks provides numerous options that once can use to build product integrations with
Databricks. One can use a specific mechanism depending on the architecture of your product,
the use case you are trying to address and the programming language that you use in your
product/application.

Databricks Confidential
10

< databricks

For example, a Bl product will use a Databricks JDBC/ODBC or Databricks SQL connectors to
push down SQL queries to a Databricks SQL warehouse. A visual ETL product, which
generates python or Scala code, will use Databricks REST APIs to submit Databricks Jobs that

execute on jobs compute.

Below are some examples of products and how they integrate

ISV Product Type Example ISV Use Case
Bl Tableau / PowerBI Use ODBC and Push down SQL
Visual ETL that Matillion Use JDBC and Push down SQL
generates SQL
Visual ETL that generates Prophecy Use Rest 1.2 API and Push down
Scala/Java pyspark/scala jobs
Visual ETL - Interactive/IDE | VS code, Dataiku,Matlab Use Databricks connect
Enterprise Catalog Collibra, Alation Use rest api and JDBC+SQL to retrieve
Databricks metadata
Data Integration/Connectors Fivetran, Rivery, Use JDBC and SQL to Ingest data into
Hevodata, Arcion Databricks
ETL products that Dbt cloud, Fivetran, Use Databricks dbt adapter to pushdown
generate/execute dbt Prophecy SQL
projects

Note that some ISVs implement multiple use cases within the same product - for example, a visual ETL
product might retrieve table metadata via JDBC to populate a list of tables in their Ul AND also push down
scala/python jobs via REST APIs.

© 2023, Databricks Inc., All Rights Reserved.

Databricks Confidential
11

< databricks

Integrating with Databricks : Available options

Databricks SQL Additional Integration

SDK REST API

connectors / drivers options
Python Python connector REST api fpr
L for sql SQL Execution = Jobs
S GO lang > GO lang | REST api for jobs
connector
— dbconnect v2
- Java > NodeJS REST 2. ap! L
- interactive
workloads
Spark Datasource
——
_— SQL ___»| SQLAlchemy e connectors

» ODBC/JDBC Delta Live Tables

(DLT)

> pyodbc

| Streaming Tables

databricks dbt
adapter

] Custom Libraries

Databricks has extensive support for SQL, Python, Rest api’s. The product documentation
provides details and examples for all the above. This document aims to provide some guidance
on that to use for some common integration scenarios. If you have architecture questions or
specific needs, reach out to your Databricks Partner Manager or Partner Solutions Architect
(request to schedule an architecture review session).

Lets deep dive into some of the key mechanisms to integrate with Databricks

Databricks Confidential
12

< databricks

SQL connectors for Databricks

You can use SQL connectors, drivers, and APls to connect to and run SQL statements and
commands from Databricks compute resources. These SQL connectors, drivers, and APIs
include:

SQL connector for python

SQL Driver for GO

SQL Driver for NodeJs

SQL statement execution api (REST)
Pyodbc

ODBC driver

JDBC driver

Learn more
e https://docs.databricks.com/dev-tools/index-driver.html
[]

Databricks Connect (aka DbConnect)

Databricks Connect is a client library for the Databricks Runtime. It allows you to write jobs
using Spark APIs and run them remotely on a Databricks cluster instead of in the local Spark
session. Examples of when to use this include Interactive IDE’s, notebooks, custom
applications, interactive execution of jobs.

Learn more
e https://docs.databricks.com/dev-tools/databricks-connect.html

Databricks Jobs

A Databricks job is a way to run your data processing and analysis applications in a Databricks
workspace. Your job can consist of a single task or can be a large, multi-task workflow with
complex dependencies. Databricks manages the task orchestration, cluster management,

Databricks Confidential
13

https://docs.databricks.com/dev-tools/index-driver.html
https://docs.databricks.com/dev-tools/databricks-connect.html

< databricks

monitoring, and error reporting for all of your jobs. You can run your jobs immediately,
periodically through an easy-to-use scheduling system.

You can package your job to be executed as a jar or a python whl file and then create/invoke the
job using the Rest api.

The following are two ways to create the jobs
e Use the “create & run now” api to create jobs. These jobs are visible on the Databricks ui
and there is a limit on the total number of jobs on a workspace (default is 1000 jobs)
e Use the “Runs Submit” api to create jobs via api. These jobs will not be visible on the
databricks ui and you will have to use the rest api to query for the status of the jobs.
Jobs submitted by this api do not count towards the maximum 1000 jobs per workspace.

Learn more
e https://docs.databricks.com/workflows/index.html#what-is-databricks-jobs
e https://docs.databricks.com/workflows/jobs/jobs-2.0-api.html
[]

Examples of integration mechanism to use

Let's look at a couple of examples on how you should think about building integrations with Databricks.
More prescriptive guidance around various use cases are described in later sections of this document.

Example 1:

If your application architecture uses SQL for ingest and pushdown for transformations, recommend using
the SQL apis executed via JDBC/ODBC/other connectors
e Connect to a Databricks SQL warehouse or interactive cluster via ODBC/JDBC/connectors/SDKs
and then execute SQL. For example execute SQL for create table, copy into, insert , merge and
others
Use SQL to ingest data into Databricks
Use SQL to push down transformations

Example 2:

If your application architecture prefers integrating via REST apis and submitting jobs (python,scala,java,
jars) to Databricks, then use REST 2.0/1.2 apis.

Databricks Confidential
14

https://docs.databricks.com/workflows/index.html#what-is-databricks-jobs
https://docs.databricks.com/workflows/jobs/jobs-2.0-api.html

< databricks

e REST 2.0 api is used for example to submit jobs using python, scala or java.
REST 1.2 api is the preferred api to handle interactive execution. For example similar to what you
can do on the cells in a databricks notebook.

More on these below

e RestAPI2.0
o Supports submission of batch and structured streaming jobs, coded in either python or
scala/java (packaged as jar files).
Submitted jobs can run on an all purpose cluster or a job cluster
Not a good fit for SQL push down
Not a good fit for applications that require interactive SLAs
For python & scala jobs this is the recommended API, unless you must support an
interactive SLA (see Rest 1.2 API section below)

o O O O

e Rest API 1.2 (command execution api)
o Supports submission of python and scala snippets to an all purpose cluster (job clusters
not supported)
o Good fit for interactive SLAs (for eg, if a human is waiting on a Ul for a result on the client
side)
o Not a good fit for batch or structured streaming jobs
e Databricks connect
o DB conenct would be another option to consider if you are using python/scala/r in an
interactive manner
o It currently does not support pushing down multi node or single node ML jobs

Recommendations based on product categories

Ingest, CDC, Streaming Ingest, Data Replication

Below describes the high-level workflow associated with building an integration with Databricks
for an ISV product to support the following use cases : Ingest, Change Data Capture (CDC),
Streaming Ingest and data replication.

Databricks Confidential
15

https://docs.databricks.com/api/workspace/jobs
https://docs.databricks.com/api/workspace/commandexecution
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html

< databricks

Use SQL Conenctor

(Python, GO, SQL Alchemy,
JDBC/ODBC, NodeJS, others)

¥
Table
'/N Exists?
Create Delta Yes

table

Usecase : Ingest handle
updates, CDC

Land data into staging location on cloud object store

Options

1. [Recommended] UC Volumes based staging location
2. Customer managed staging location

3.1SV managed staging location

4. [Deprecated]

Ingest data into Databricks Delta Table

Options

1. Execute SQL "copy into" 1o load the data from "staging
location” into a Delta Table

2. Execute SQL merge commands to handle updates,
deletes

Cleanup staging location

On successful ingest
1. drop any staging tables / views (if applicable)
2. Delete staging files/folders

Usecase : Ingest new
data only

Use Detta Live Tables (DLT)

e

l

DLT
pipeline
exists?

No

v

Create sqlipython commands needed
for DLT notebook

Options for source data
1. Read data from object store (staging
location)

)
2.Read data from message bus like
Kafka, Kinesis, Azure event hubs

Yes {

Call Databricks REST api

Steps

1. Create/ Update DLT notebook. Source
data config specified in DLT code.

2. Configure/Deploy/Re-deploy DLT
pipeline

3. Execute DLT pipeline : on demand, on
schedule or run continuously

Cloud object store Message bus

K____—‘\—‘

Usecase : Streaming

—
Use Streaming Tables
(Supported on Databricks SQL
Serverless only)
Streaming
’/Nﬂ’—' table exists?
Create
Streaming table

Cloud object store

Land staging data into staging location on
cloud object store, used by Streaming table

Note: Streaming tables support object stores
like 53, ADLS, GCS

Options

1. [Recommended] UC Volumes based
Staging Location

2. Customer managed staging lecation

Yes

Publish data to message bus used
by Streaming table

Note: Streaming table supports
reading data from message bus
like Kafka, Kinesis, Azure event

Call Databricks Rest APIs / SQL

1. Get status/metrics of executions by calling

monitoring api's

2. Moadify execution schedule for streaming
table: on demand, on schedule or run

cantinuously

Land data into staging location on cloud Publish data to message bus used
object store by DLT

Options Note: DLT supports reading data
1. [Recommended] UC Volumes based from message bus like Kafka,
Staging Location Kinesis, Azure event hubs

2. Customer staging location

Call Databricks Rest APIs

1. Get status/metrics of DLT pipeline

executions
2. Execute DLT pipeline: on demand, on
le or continuausly

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential
16

< databricks

Below describes the high-level workflow on how to use Unity Catalog (UC) Volumes as a
temporary staging location for data.

Land data into staging location on cloud object store

Options

1. [Recommended] UC Volumes based staging location
2. Customer managed staging location

3. ISV managed staging location

Use UC
Volumes
based staging
location

Yes

Volume
exists under
schema

—NO—__

Create a volume per schema

Notes:

1. Unity Catalog 3 level namespace hierarchy

is Catalog->Schema->Table

2. Create a volume under each schema. |
2. Create folder per table under volume path. Yes
Under that you can create folders and files.

b 8

Write file to volume path

Notes:

1. ISV product manages the foldersf/files under
the folder per table.

2. Write file/folder to volume path using rest api
or SQL (using SQL connector for python)

Use volume path for staging file/folder in sq|
copy-into, DLT or streaming table

Delete staging file/folder after successful ingest

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential

17

< databricks

Transformation, ETL, Data prep

Visual low code data prep

Monitoring & Observability

Bl and Visualization

Security

Data Science, ML and Al

Refer to the section on Data Science, ML and Al integrations

REST API best practices

Some rest api best practices when iterating with Databricks

e Always set the “user-agent” HTTP header on REST API and JDBC/ODBC calls . This needs to
your “[isv_vendor_name]_[product name]’
If submitting Jobs via REST API, use runs-submit API
Do not use DBFS API to move large amounts of data or as a staging location for Delta ingest for
production workloads

e Use Databricks volumes for larger amounts of data or as a staging location for Delta ingest for
production workloads

e Build retries into all REST API calls to handle 500, 429 & 503 response codes

Databricks Confidential
18

< databricks

o Upto 10 minutes, at 30s intervals
e Build Job retry options on your Uls
o Sometimes a job fails due to temporary issues - customers like to retry automatically

Relevant REST API & Workspace upper limits

Component Comments

Jobs API input payload size 10 MB

Jobs API - Create (Visible on Ul) per 1000 Use Runs Submit API to bypass this

workspace limitation

Concurrent running jobs per 1000

workspace

Number of jobs run per hour in a 5000

workspace

Job Runs list expiration 60 days Export runs if needed beyond 60
days

Metastore connection limit per Guaranteed 100 today, 200 default If limits hit, use external metastore

workspace by Q3

REST API Requests per second per 30 Build in retries to handle the 429

workspace error code when limits are reached

Rest 1.2 API result payload limit 2MB

Rest 1.2 API input payload limit 10 kb

Designing the Ul for the Databricks connector

When designing the connection screen on your product to connect to Databricks, the following is some
high level guidance.

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential
19

https://docs.databricks.com/dev-tools/api/latest/jobs.html#jobsjobsserviceexportrun

< databricks

Connection details

These can be obtained from the Databricks Compute Ul or Databricks SQL Warehouses Ul. Passing the
UserAgent attribute is required for all ISV integrations with Databricks. The UserAgent tag is passed as
part of the connection request. (additional details are available in the section around UserAgent). Here is
an example of an ISV designed Databricks connection dialog.

Providing an ability to pass additional JDBC/ODBC attributes would be useful for some customers.
Example of additional advanced attributes include proxy server configs, logging, timeouts,
UseNativeQuery and others advanced options specified in the Databricks Simba Driver documentation

e Hostname : The hostname for the Databricks workspace
e Port: Default is 433
HTTP Path or JDBC URI

Note: One can set “UseNativeQuery=1" to ensure the driver does not transform the queries. Not needed
if using the latest databricks drivers

Authentication

These are the authentication mechanisms supported by Databricks. We support OAuth currently on Azure
using Azure Active Directory and OAuth on AWS and GCP. Refer to the OAuth integration guide for
additional details.

e OAuth [Recommended]
o Azure Active Directory
m On Azure we support OAuth using Azure AAD
m This is the preferred mode of authentication for Azure Databricks
m Additional fields required : AAD endpoint
o AWS
GCP

e Personal Access Token (PAT Token) [Required]
o This is the preferred mode for authentication on AWS and GCP
o PAT tokens are supported on Azure Databricks

e Username / Password
o The following two options are available if using this option to authenticate
o Use the username of the Databricks user and their password.
o Use username = “token” and password =" value of PAT token”

Databricks Confidential
20

https://docs.microsoft.com/en-us/azure/databricks/integrations/bi/tableau
https://simba.wpengine.com/products/Spark/doc/ODBC_InstallGuide/unix/content/odbc/hi/options/options-advanced.htm

< databricks

Advanced Configurations

Ingest and ELT integrations would require additional configurations like location for staging data and
location of the target table. Customers might start with managed Delta tables but would move to using
unmanaged Delta tables (data stored directly on cloud storage location in s3/adls/gcs).

e (Catalog name
Databricks unity catalog name could be entered by a user, this catalog name can then be set on
the connection level as the default. This ensures that you can support one catalog set at the
connection level. If your product already supports 3 level namespaces then you may or may not
specify this field.

e Staging location
The staging location for data to be ingested into Delta can either use a location that is managed
by the ISV product or managed by the customer.

o Databricks Volumes based staging location
m This is managed by Databricks and secured using the unity catalog
m Refer to the section on how to use Volumes for staging data fro ingest
o Managed by ISV
m Staging folder is managed by the ISV, in their own account.
m ISV product to use AWS STS tokens during ingestion into Delta, using the “copy
into” command.
o Customer managed
m Customer provides an s3/adls/gcs location where the ISV product can land the
staging data.
m Customer provides access credentials to ISV product to write staging data.
m Databricks cluster or SQL endpoint is configured to read from the staging
location.
e Table data location
Databricks customers tend to use cloud storage location for Delta tables (i.e external tables or
unmanaged tables). They could provide a base path that could then used when creating tables
o Databricks compute or SQL warehouse is configured to read/write to the table data
location.
o Refer to the section on UC Storage location, Credential, and assigning the ACL’s to the
user

Databricks Confidential
21

< databricks

Integration checklist - Ingesting data into Databricks

ISV ingest product integrations should support the following features when creating tables

Support 3 level namespace : catalog_name, schema_name and table_name

Auto create delta tables when ingesting data

Add appropriate table metadata. Refer to section around “Table creation”

Support managed delta tables

[optional] Support unmanaged delta tables

[optional] Set delta optimization on tables

Pass UserAgent tag for all calls to Databricks REST /JDBC / ODBC /Connector/ SDK calls. Refer
to the section around setting UserAgent.

Implement the merge optimization best practices. Refer to section around “Merge best practices”

Table creation and Unity Catalog metadata

Table and Column properties

Setting table comments and column comments allows setting useful metadata about a table. If a
comment was already set, it overrides the old value with the new one.

For example passing a comment at the time of creating the table

CREATE or REPLACE TABLE democatalog.mydatabase.events (

Databricks Confidential
22

< databricks

date DATE COMMENT 'The date the event took place',
eventId STRING COMMENT 'The Id for the event',
eventType STRING COMMENT 'The event type',
data STRING COMMENT 'Data about the event')

USING DELTA

PARTITIONED BY (date)

LOCATION '/tmp/delta/events'

COMMENT 'A table comment.'

To set a comment on an existing table

ALTER TABLE democatalog.mydatabase.events SET TBLPROPERTIES ('comment' = 'A table

comment."')

To set a comment on the column for an existing tables

ALTER TABLE democatalog.mydatabase.events ALTER eventType COMMENT 'The event type.

updated'

Requirements around order of columns as you create table

Make sure that the primary key, foreign keys and other key columns are within the first 32
columns. Delta collects statistics only for the first 32 columns. These statistics help improve
performance of queries and merges.

Setting primary and foreign key metadata

Typical ISV products that ingest data into Databricks, first extract data from source systems like
databases, applications, streaming systems, files and others. They introspect the schemas from
the source systems and create the target Databricks delta tables. It is recommended that
primary keys and foreign key relationships are applied to the Databricks tables. Databricks
stores the metadata on the primary key and foreign keys and currently does not enforce the
constraints.

Databricks Confidential
23

< databricks

e |[f there are primary key/ foreign keys, make sure to add the metadata for the tables on
Databricks
o https://docs.databricks.com/sqgl/language-manual/sql-ref-syntax-ddl-create-table-
constraint.html
o https://docs.databricks.com/sqgl/language-manual/sqgl-ref-syntax-ddl-alter-table-ad
d-constraint.html

Prerequisite : Unity Catalog should be enabled and used on the workspace.
Generated columns in Delta

Delta supports generated columns which are a special type of columns whose values are automatically
generated based on a user-specified function over other columns in the Delta table. When you write to a
table with generated columns and you do not explicitly provide values for them, Delta Lake automatically
computes the values. For example, you can automatically generate a date column (for partitioning the
table by date) from the timestamp column; any writes into the table need only specify the data for the
timestamp column.

Additional links to relevant documentation
e https://docs.databricks.com/delta/generated-columns.html

Example:
CREATE TABLE democatalog.democatalog.mydatabase.events (
eventId bigint,
eventTime timestamp,
eventDate date GENERATED ALWAYS AS (CAST (eventTime AS DATE)))
USING DELTA
PARTITIONED BY (eventDate)

Handling identity columns and surrogate keys

Additional links to relevant documentation

e https://www.databricks.com/blog/2022/08/08/identity-columns-to-generate-surrogate-key
s-are-now-available-in-a-lakehouse-near-you.html

Databricks Confidential
24

https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-constraint.html
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-create-table-constraint.html
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-alter-table-add-constraint.html
https://docs.databricks.com/sql/language-manual/sql-ref-syntax-ddl-alter-table-add-constraint.html
https://www.databricks.com/blog/2022/08/08/identity-columns-to-generate-surrogate-keys-are-now-available-in-a-lakehouse-near-you.html
https://www.databricks.com/blog/2022/08/08/identity-columns-to-generate-surrogate-keys-are-now-available-in-a-lakehouse-near-you.html

< databricks

Enabling Deletion Vectors

e Enable Deletion Vectors to speed up MERGE performance.

e Requires MERGE being run using photon-enabled or warehouse clusters.
o Works with DBR 12.1+ with Photon
o DBSQL pro and DBSQL serverless
o Call cluster rest api to get the above details

e [RECOMMENDED] Enable Deletion Vectors by setting the table property:

Java
ALTER TABLE <table_name> SET TBLPROPERTIES
('delta.enableDeletionVectors' = true);

Prerequisite : Unity Catalog should be enabled and used on the workspace. Photon needs to be
enabled on the DBSQL pro or DBSQL serverless compute.

Resources: Table creation and data types

e How to Identity Columns to Generate Surrogate Keys in the Databricks Lakehouse
e \What's a Dimensional Model and How to Implement It on the Databricks Lakehouse
Platform

Managed vs external tables

Refer to External tables | Databricks on AWS for details around external tables

Managed Delta tables

For a managed table both the data and the metadata are managed. Doing a DROP TABLE deletes both
the metadata and data.

Example:
CREATE IF NOT EXISTS TABLE democatalog.mydatabase.events (
date DATE,
eventId STRING,
eventType STRING,
data STRING)

Databricks Confidential
25

https://www.databricks.com/blog/2022/08/08/identity-columns-to-generate-surrogate-keys-are-now-available-in-a-lakehouse-near-you.html
https://www.databricks.com/blog/2022/11/07/load-edw-dimensional-model-real-time-databricks-lakehouse.html
https://www.databricks.com/blog/2022/11/07/load-edw-dimensional-model-real-time-databricks-lakehouse.html
https://docs.databricks.com/en/sql/language-manual/sql-ref-external-tables.html

< databricks

USING DELTA

External tables

For external tables you specify the LOCATION as a path. Tables created with a specified LOCATION are
considered external or unmanaged by the metastore. Unlike a managed table, where no path is specified.
An external table’s files are not deleted when you DROP the table.

Example:

CREATE TABLE democatalog.mydatabase.events (
date DATE,
eventId STRING,
eventType STRING,
data STRING)

USING DELTA

LOCATION '/[s3/adls/mnt]/delta/events'

If you want to overwrite the data at a location for Delta tables then you can use the following

CREATE OR REPLACE TABLE democatalog.mydatabase.events (
date DATE,
eventId STRING,
eventType STRING,
data STRING)
USING DELTA
LOCATION 's3a://delta/events'

If a table with the same name already exists, the table is replaced with the new configuration. Databricks
strongly recommends using CREATE OR REPLACE instead of dropping and re-creating tables.

Important Notes

1. “CREATE OR REPLACE” is supported for Delta

2. If you have created an external table, drop the table and try to recreate the unmanaged table
using the same location, the second create table will fail. You will have to make sure that the
location is empty before running second create table

3. If you have created an external table, and you want to overwrite data+schema, then you can use
the “ CREATE OR REPLACE TABLE”. This overwrites the table+schema+data at the specified
location.

Databricks Confidential
26

< databricks

The location specified can be a s3 or adls or gcp paths. For Example

Amazon S3 path
s3a://bucket/path/to/dir

Azure adls gen2 path

abfss://<file-system-name>@<storage-account-name>.dfs.core.windows.net/<directo

ry-name>/path/to/dir
UC Volume path

UC Personal staging location path

Ingest newly arriving data with no updates

Some of the options for integration include the following
e Using SQL “copy into”

e Using Delta Live Tables (DLT)
e Using Streaming tables

At a high level below provides the steps to ingest data into Delta

Databricks Confidential
27

< databricks

Delta Ingest

A two step process

Step 1:

= Move data from source(eq
salesforce) to a staging S3
or ADLS location first

= Inmost cases, this staging
location will be in
customer’s account

= Do not attempt to remotely

Ingest
Source

Step 2
(Create/Insert Use Case):

Create Delta table if it doesn't
exist at location specified by
customer

Use COPY INTO command to
insert data(files/folders) from
staging area into target Delta
table

= Can be driven by

S3/ADLS
Staging
Area

A

DELTA LAKE

Step 2
(Insert/Update/Delete Use Case):

Define a table on staged data
which contains both changed
records and new ones

Use MERGE command to do the
update/insert/delete in one
efficient transaction
= Above command can be
driven by JOBC/ODBC orviaa

insert data into Delta as if it JDBC/ODBC orviaa REST REST Job

were a relational database Job

table = Ensure cluster has permissions to

= Ensure cluster has permissions read from staging area & write to
to read from staging area & write delta location
to delta location
* Remove staging table & data
. databricks = Remove staging data

Using SQL “copy into”

Using the “Copy Into” command is the preferred method to ingest newly arriving data into Databricks. It
does not handle updates to data in the table.

The "Copy into” requires the data to be staged as files, on cloud storage or uc volumes. Use any format
supported by spark as the file format for the staged data. If you have the ability to write the staging data
as Parquet, then Parquet would be the preferred file format.

There are four options for staging data

UC Volumes based staging location [Recommended]

UC Personal staging location based staging location [Deprecated]

ISV managed staging S3 bucket
o The ISV uses their own S3 bucket to stage data for ingestion (for their customers).
o Use AWS STS tokens and SSE-E encryption when invoking the “copy into” command.

Details on using these options in the next section
e Customer provided staging location

o Customer to provide credentials to be able to write to the staging folder
o Databricks cluster configured to be able to read data from the staging location

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential
28

< databricks

Example of using the copy command using a csv staging file
COPY INTO demo_catalog.demo_db.demo_users
FROM (select id, first_name, last_name, email, gender, ip_address FROM 's3://pkona-isv-staging/')
FILEFORMAT = CSV
PATTERN ="'mock_data/demo_users_csv/mock data v1_correct _col_order.csv'
FORMAT_OPTIONS('header' = "true', 'inferSchema' = 'true")
COPY_OPTIONS ('force' = 'false')

Example of using the copy command using a parquet staging file

COPY INTO demo_catalog.demo_db.atm_transactions

FROM 's3://pkona-isv-staging/mock_data/atm_transactions_parquet'
FILEFORMAT = PARQUET

PATTERN = 'part-00001*.snappy.parquet’

COPY_OPTIONS ('force' = 'false’)

Additional examples on how to use the copy command available in sample notebooks provided as part of
this document bundle.

Additional links to relevant documentation
e https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-copy-into.html

Using Delta Live Tables (DLT)
Refer to the section under Delta Live Tables (DLT)
Using Streaming tables

Refer to the section under streaming tables

Merge : Best practices for performance optimization

This section describes some to the performance optimization best practices when doing merge:

1. Use a DBSQL Pro or Serverless Warehouse or a Photon-enabled Cluster whenever
possible. Use the most recent DBR version when using a Cluster.

2. Z-Order the target table by the join keys of the merge. This has two benefits:

Databricks Confidential
29

< databricks

a. It reduces the number of files that a merge statement has to rewrite. For many
merges only a small subset of the “key space” is affected, and by z-ordering the
table we can restrict this small subset to a small number of files.

b. It also allows additional optimizations to be added that allow pruning the target
table.

3. Prune the files in the target table that need to be read by the merge by adding additional
filters to the join condition of the merge.

As an example, consider the following merge statement that performs an upsert:

MERGE INTO target t

USING source s

ON t.pkl = s.pkl AND .. AND t.pkn = s.pkn
WHEN MATCHED THEN UPDATE SET *

WHEN NOT MATCHED THEN INSERT *

First we need to collect the filter values that we are going to add:

SELECT MIN(pkl), MAX(pkl), .., MIN(pkn), MAX (pkn)
FROM source

Then, using the result of this query, we need to modify the merge statement as follows:

MERGE INTO target t

USING source s

ON t.pkl = s.pkl AND .. AND t.pkn = s.pkn

AND t.pkl >= {min pkl} AND t.pkl <= {max pkl}
AND ..

AND t.pkn >= {min pkn} AND t.pkn <= {max pkn}
WHEN MATCHED THEN UPDATE SET *

WHEN NOT MATCHED THEN INSERT *

4. Ensure that the join keys are part of the first 32 columns of both the target and the
source table. Delta currently only collects min/max statistics for the first 32 columns in
the table. Without these statistics we cannot prune the target table, and we cannot
efficiently collect the min and max of the columns in the source table.

5. If you plan to run multiple concurrent merges on the same table, make sure to have no
conflicts. Check the links below for details

a. https://docs.databricks.com/optimizations/isolation-level.html

Databricks Confidential
30

https://docs.databricks.com/optimizations/isolation-level.html

< databricks

b. https://docs.databricks.com/optimizations/isolation-level.html#avoid-conflicts-usin
g-partitioning-and-disjoint-command-conditions

c. https://docs.databricks.com/optimizations/isolation-level.html#write-conflicts-o
n-databricks

Ingesting data using Delta Live Table (DLT)

What is Delta Live Tables is fully explained in our documentation starting with defining the differences
between a streaming table, Materialized view and views. Start with this page to understand the
fundamentals.

Limitations
The following limitations apply:

e All tables created and updated by Delta Live Tables are Delta tables.

e Delta Live Tables tables can only be defined once, meaning they can only be the target of a
single operation in all Delta Live Tables pipelines.

e Identity columns are not supported with tables that are the target of APPLY CHANGES INTO
and might be recomputed during updates for materialized views. For this reason, Databricks
recommends only using identity columns with streaming tables in Delta Live Tables. See Use

identity columns in Delta Lake.

Resources

e Delta Live Tables has full support in the Databricks REST API. See Delta Live Tables API
guide.

e For pipeline and table settings, see Delta Live Tables properties reference.

e Delta Live Tables SQL language reference.

e Delta Live Tables Python language reference.

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential
31

https://docs.databricks.com/optimizations/isolation-level.html#avoid-conflicts-using-partitioning-and-disjoint-command-conditions
https://docs.databricks.com/optimizations/isolation-level.html#avoid-conflicts-using-partitioning-and-disjoint-command-conditions
https://docs.databricks.com/optimizations/isolation-level.html#write-conflicts-on-databricks
https://docs.databricks.com/optimizations/isolation-level.html#write-conflicts-on-databricks
https://docs.databricks.com/delta-live-tables/index.html
https://docs.databricks.com/delta/generated-columns.html#identity
https://docs.databricks.com/delta/generated-columns.html#identity
https://docs.databricks.com/delta-live-tables/api-guide.html
https://docs.databricks.com/delta-live-tables/api-guide.html
https://docs.databricks.com/delta-live-tables/properties.html
https://docs.databricks.com/delta-live-tables/sql-ref.html
https://docs.databricks.com/delta-live-tables/python-ref.html

< databricks

System Limits

Notebooks per DLT Pipeline 25 limit, can be raised on request

Concurrent DLT Pipelines per Workspace 100 limit, can be raised on request

Scalability Guidelines

Resource Guidance on Table Count

of live tables in a triggered pipeline <100
of streaming live tables in a triggered pipeline <50
of live + streaming tables in a continuous pipeline <25

A DLT pipeline can easily be managed following the REST API Pipeline reference once the notebook has
been imported. Alternatively a notebook can be imported using the Workspace command of the
Databricks CLI or the Databricks Terraform provider prior to scheduling your DLT pipeline.

DLT workshop git repo https://github.com/ddubeau/DLT-hands-on-workshop

Examples of a DLT pipeline with Auto Loader

1. Load a notebook via Api using Basic Authentication (see Authentication for
Databricks automation for additional information)

curl —netrc -X POST \
htttps://<databricks-instance>/api/2.0/workspace-files/import \
--header "Authorization: Bearer S$databricks-token" \

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential
32

https://docs.databricks.com/api/workspace/pipelines
https://docs.databricks.com/api/workspace/workspace/import
https://docs.databricks.com/archive/dev-tools/cli/workspace-cli.html
https://docs.databricks.com/archive/dev-tools/cli/workspace-cli.html
https://registry.terraform.io/providers/databrickslabs/databricks/latest/docs/resources/notebook
https://github.com/ddubeau/DLT-hands-on-workshop
https://docs.databricks.com/dev-tools/auth.html#authentication-for-databricks-automation
https://docs.databricks.com/dev-tools/auth.html#authentication-for-databricks-automation

< databricks

--header ‘Content-type: multipart/form-data’ \
--form path=/Repos/ddubeau/DLT-hands-on-workshop \
-—form format=SOURCE \

--form language=SQL \

--form content=02. Building Delta Live Tables Pipelines-SQL
--form overwrite=true

Replace:

e <databricks-instance> with the Databricks workspace instance name, for example
dbc-a1b2345c¢-d6e7.cloud.databricks.com
e $databricks-token with the Databricks token

2. Create a DLT Pipeline

curl --netrc -X POST \
https://<databricks-instance>/api/2.0/pipelines \
--data @pipeline-settings.json

3. Start a DLT pipeline

curl --netrc -X POST \
https://<databricks-instance>/api/2.0/pipelines/<pipeline-id>/updates \
-—-data '{ "full refresh": "true" }'

For a full list of APl examples, please refer to the Delta Live Table API guide.

SQL “Copy Into” best practices

Using AWS STS and SSE-C encryption with “Copy Into”

Databricks Confidential
33

https://github.com/ddubeau/DLT-hands-on-workshop
https://docs.databricks.com/workspace/workspace-details.html#workspace-url
https://docs.databricks.com/dev-tools/cli/databricks-cli.html#basic-authentication
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#create-a-pipeline
https://docs.databricks.com/delta-live-tables/api-guide.html#start-a-pipeline-update
https://docs.databricks.com/delta-live-tables/api-guide.html#delta-live-tables-api-guide

< databricks

STS authentication

This feature is only supported with our new S3A client, and if multiple credential sets will be used for the
same bucket filesystem caching must be disabled. To configure this, add the following Spark configuration
settings to the cluster:

spark.hadoop.fs.s3.impl shaded.databricks.org.apache.hadoop.fs.s3a.S3AFileSystem

spark.hadoop.fs.s3a.impl shaded.databricks.org.apache.hadoop.fs.s3a.S3AFileSystem

spark.hadoop.fs.s3n.impl shaded.databricks.org.apache.hadoop.fs.s3a.S3AFileSystem
spark.hadoop.fs.s3.impl.disable.cache true

spark.hadoop.fs.s3a.impl.disable.cache true

spark.hadoop.fs.s3n.impl.disable.cache true

STS authentication allows accessing an S3 bucket with temporary credentials generated through the
AWS Security Token Service. Long-lived credentials are unsupported, as they should not be embedded in
SQL queries. Usage:
COPY INTO delta."/my/target/path® FROM '/my/source/path’
FILEFORMAT = CSV
CREDENTIALS (
‘awsKeyld' = '$key’,
'‘awsSecretKey' = '$secret’,
'‘awsSessionToken' = '$token

SSE-C encryption

This feature requires the same Spark configuration as STS authentication.

SSE-C encryption allows storing files in encrypted form to AWS and securely reading them into the
cluster running COPY INTO. This can be helpful for preventing cross-reads in shared source buckets. To
use this feature, store the source files into AWS using SSE-C, and then run:
COPY INTO delta.’/my/target/path FROM '/my/source/path’
FILEFORMAT = CSV
ENCRYPTION ('type' = 'SSE-C', 'masterKey' = '$encryptionKey')
CREDENTIALS (
'‘awsKeyld' = '$key’,
'‘awsSecretKey' = '$secret’,
'‘awsSessionToken' = '$token

Databricks Confidential
34

< databricks

Databricks Confidential

35

< databricks

User Agent Tag Prerequisite for all Integrations

An user agent tag is to be passed by all partner integrations with Databricks. This tag supports tracking of
usage which helps improve customer satisfaction and increase customer adoption of the integration.

Passing the user agent tag by integrations that use REST API, ODBC or JDBC is required for any partner
integration

e To be certified by Databricks

e To be part of the Databricks Partner Gallery

e To be part of the Databricks Databricks Data Ingest Network

Passing HTTP User Agent Tag for REST API’s

Here is the detail on the HTTP user agent that needs to be populated on the rest calls to databricks api's

e HTTP User-Agent is present in all request headers when calling Databricks REST apis.The
user-agent should have the name of the name of the isv (and or integration name).
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

o For example: HTTP User-Agent should have <isv-name+product-name> in the user
agent string text

Passing User Agent Tag for ODBC/JDBC

User application name and version

Simba, starting with JDBC v2.6.16 and ODBC v2.6.15 drivers , has added a new connection string
parameter, through which user applications can specify their entry to the User-Agent. The parameter will
be UserAgentEntry. Simba will validate the value provided by the user application against the format
<isv-name+product-name>/<product-version> <comment>

Only one comment is allowed, without any nesting - ie. any characters except for comma, parentheses or
new lines.

Spaces in connection string values are preserved without any escaping.

Simba will return an error to the user application if the entry does not conform: "Incorrect format for
User-Agent entry, received: <value obtained from connection string>"

Databricks Confidential
36

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent

< databricks

For example
Tableau could specify: Tableau/2020.1 (Databricks) for Databricks datasource connector

or Tableau/2020.1 (Spark SQL) for Spark SQL datasource connector

Example 1 : Sample code from Tableau connector

Example connection-builder.js Code snipped used by Tableau connector that passes the User Agent Tag

/*
Databricks Tableau Connector
Copyright 2019 Databricks, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

*/

(function dsbuilder (attr) {
var params = {};

// The Databricks cluster ODBC endpoint

params ["HOST"] = attr["server"];
params ["PORT"] = "443";

params ["HTTPPATH"] = attr["dbname"];
params ["THRIFTTRANSPORT"] = "2";
params ["SPARKSERVERTYPE"] = "3";
params["SSL"] = "1";

// Authentication by username and password only

params ["AUTHMECH"] = 3;
params ["UID"] = attr["username"];
params ["PWD"] = attr["password"];

// Use the native HiveQL query emitted by Tableau
params ["USENATIVEQUERY"] = "1";

// Automatically reconnect to the cluster if an error occurs
params ["AutoReconnect"] = "1";

// Minimum interval between consecutive polls for query execution status
params ["AsyncExecPollInterval”™] = "1";

// Tell the ODBC driver that it is Tableau connecting.
params ["UserAgentEntry"] = "Tableau";

var formattedParams = [];

formattedParams.push (
connectionHelper. formatKeyValuePair (

Databricks Confidential

(1lms)

37

< databricks

driverLocator.keywordDriver, driverLocator.locateDriver (attr)));

for (var key in params) {
formattedParams.push (connectionHelper. formatKeyValuePair (key, params[key]));

}

return formattedParams;

H

Example 2 : To set the user agent for JDBC in Java

Sample code for setting the User Agent

com.simba.spark.jdbc.DataSource ds = new com.simba.spark.jdbc.DataSource();

ds.setCustomProperty("UserAgentEntry", "<isv-name+product-name>");

Example 3: To set the user agent for JDBC as part of the JDBC URI

Append ";UserAgentEntry=<isv-name+product-name>" to the connection URL (the one that starts with
"jdbc:spark://").

Passing User Agent as a cluster config

[J This approach uses spark configs to pass the user agent tag. This approach can be used only
after being approved by the Databricks ISV team.

On a cluster set the following spark config property

Passing User Agent Tag when using Databricks connectors

Here is how you can pass the correct ISV user-agent. ISV’s can set a string as user-agent
(<isv-name+product-name>)

Databricks Confidential
38

< databricks

Passing user agent tag for Databricks SQL Connectors

Check the example in the section “Canceling queries and passing user agent” on how to pass user agent

for the Databricks connectors
e Go connector
e Node.js connector
e Python connector
e JDBC
e ODBC

Passing user agent tag for Databricks Connect

The “user_agent” should be added as part of the connection, as part of the connection parameters. Link

. In addition, if you are using the DatabricksSession from dbconnect you can use
DatabricksSession.builder.userAgent("my_useragent")....getOrCreate()

Using Databricks Connectors

Canceling queries and passing user agent

Here is how you can pass the correct ISV user-agent; cancel operation. ISV’s can set a string as
user-agent<isv-name-+product-name>.

Go connector
<<Content coming soon>>

Node.js connector

async function initClient({ host, endpointld, token, client }) {
const client = new DBSQLClient();
return client.connect({
host,
path: */sql/1.0/endpoints/${endpointid}’,
token,

Databricks Confidential

39

https://github.com/apache/spark/blob/master/connector/connect/docs/client-connection-string.md

< databricks

clientld: “<isv-name+product-name>",

b

const client = await initClient(host, endpoint, token, client);
const session = await client.openSession();
const queryOperation = await session.executeStatement(

SELECT id
FROM RANGE(100000000)
ORDER BY RANDOM() + 2 asc

{ runAsync: true },

);

queryOperation.cancel();

Python connector

databricks.sql.connect(**self. DUMMY_CONNECTION_ARGS,
_user_agent_entry="<isv-name+product-name>")

with self.cursor({}) as cursor:
def execute_really_long_query():
cursor.execute("SELECT SUM(A.id - B.id) " +

"FROM range(1000000000) A CROSS JOIN range(100000000) B " +
"GROUP BY (A.id - B.id)")

exec_thread = threading.Thread(target=execute_really_long_query)

exec_thread.start()

cursor.cancel()

JDBC

url="jdbc:databricks://adb-111111111111xxxxx.xx.azuredatabricks.net:44 3/default;transportMode=http;ss
I=1;httpPath=sql/protocolv1/o/<workspaceld>/<clusterld>;AuthMech=11;Auth_Flow=0;Auth_AccessTok
en={0};UserAgentEntry=<isv-name+product-name>".format(access_token)

val connection = DriverManager.getConnection(url, user, ")
val statement = connection.createStatement()
val f = Future {
statement.executeQuery("SELECT COUNT(*) FROM big_table")
}

Databricks Confidential
40

< databricks

Thread.sleep(1000)

statement.cancel()

ODBC

SQLHDBC dbg;
char conn[1024] = "";

char *buffer = stpcpy(stpcpy(conn, "DRIVER="), PATH);

buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,

";UserAgentEntry="), "<isv-name+product-name>");
"HOST="), SHARD);

" PORT="), "443");

":AuthMech="), "3");

"HTTPPath="), HTTP_PATH);

";UID="), "token");

";PWD="), PWD);

" SSL="), "1");

" ThriftTransport="), "2");

/Ibuffer = stpcpy(stpcpy(buffer, ";RowsFetchedPerBlock="), rowsPerFetch); // 10000

buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,
buffer = stpcpy(stpcpy(buffer,

":EnableArrow="), withArrow); // hidden
";EnableQueryResultDownload="), "1"); //hidden 1
";UseNativeQuery="), "1"); //hidden 1
":EnableCurlDebuglLogging="), "1");
";LogLevel="), "4");

printf("Connecting string: %s\n", conn);

H e T e T n
printf(\n")

’

SQLDriverConnect(dbc, NULL, conn, SQL_NTS, NULL, 0, NULL, SQL_DRIVER_COMPLETE);

SQLHSTMT stmt;

i SQLCancel(stmt);

Databricks Confidential

41

< databricks

Data science, ML & Al Integrations

Integrating with Foundational Model API's / LLM’s on Databricks

What are foundation models?

Foundation models are large ML models pre-trained with the intention that they are to be
fine-tuned for more specific language understanding and generation tasks. These models are
utilized to discern patterns within the input data for generative Al and LLM workloads.

Databricks Model Serving supports serving and querying foundation models using the following
capabilities:

e Foundation Model APIs. This functionality makes state-of-the-art open models available
to your model serving endpoint. These models are curated foundation model
architectures that support optimized inference. Base models, like Llama-2-70B-chat,
BGE-Large, and Mistral-7B are available for immediate use with pay-per-token pricing,
and workloads that require performance guarantees and fine-tuned model variants can
be deployed with provisioned throughput.

e [External models. These are models that are hosted outside of Databricks. Endpoints that
serve external models can be centrally governed and customers can establish rate limits
and access control for them. Examples include foundation models like, OpenAl’'s GPT-4,
Anthropic’s Claude, and others.

What are Databricks Foundation Model APIs?

Databricks Model Serving now supports Foundation Model APIs which allow you to access and
query state-of-the-art open models from a serving endpoint. With Foundation Model APIs, you
can quickly and easily build applications that leverage a high-quality generative Al model
without maintaining your own model deployment.

The Foundation Model APIs are provided in two pricing modes:

Databricks Confidential
42

https://docs.databricks.com/en/machine-learning/foundation-models/index.html
https://docs.databricks.com/en/generative-ai/external-models/index.html

< databricks

e Pay-per-token: This is the easiest way to start accessing Foundation Models on
Databricks and is recommended for beginning your journey with Foundation Models.

e Provisioned throughput: This mode is recommended for workloads that require
performance guarantees, fine-tuned models, or have additional security requirements.

Query foundational models

To call foundational models on Databricks, you can utilize any one of the following
e OpenAl client

REST API

MLflow Deployments SDK

Databricks GenAl SDK

SQL function

Langchain

Refer to doc link for more details and examples
e https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-model
s.html

Query provisioned throughput endpoint

Refer to doc link for more details and the direct link to an example
e https://docs.databricks.com/en/machine-learning/foundation-models/deploy-prov-through
put-foundation-model-apis.html#notebook-examples

Below is a code snippet in python (from above notebook link) to call a provisioned throughput
endpoint

data = {
"inputs": {

"prompt": [

Databricks Confidential
43

https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html
https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html
https://docs.databricks.com/en/machine-learning/foundation-models/deploy-prov-throughput-foundation-model-apis.html#notebook-examples
https://docs.databricks.com/en/machine-learning/foundation-models/deploy-prov-throughput-foundation-model-apis.html#notebook-examples

< databricks

"Below is an instruction that describes a task. Write a response
that appropriately completes the request.\n\n### Instruction:\nWhat is Apache
Spark?\n\n### Response:\n"

1
by

"params": {
"max tokens": 100,
"temperature": 0.0
}
}
headers = {
"Context-Type": "text/json",

"Authorization": f"Bearer {API TOKEN}"

response = requests.post(
url=f"{API ROOT}/serving-endpoints/{endpoint name}/invocations",
json=data,

headers=headers

print (json.dumps (response.json()))

Query models on databricks using SQL

SQL ai_query() function

The ai_query() function is a built-in Databricks SQL function, part of Al functions. It allows these
types of models to be accessible from SQL queries:

e Custom models hosted by a model serving endpoint.
e Models/LLM’s hosted by Databricks Foundation Model APls.
e External models (third-party models hosted outside of Databricks).

Databricks Confidential
44

https://docs.databricks.com/en/large-language-models/ai-functions.html

< databricks

Example: Query a large language model

The following example queries the model behind the sentiment-analysis endpoint with the text
dataset and specifies the return type of the request.

SELECT text, ai_query(
"sentiment-analysis",
text,
returnType => "STRUCT<Ilabel:STRING, score:DOUBLE>"
) AS predict
FROM
Catalog.schema.customer_reviews

Example: Query a predictive model

The following example queries a classification model behind the spam-classification endpoint to
batch predict whether the text is spam in “inbox_messages” table. The model takes 3 input
features: timestamp, sender, text. The model returns a boolean array.

SELECT text, ai_query(
endpoint => "spam-classification”,
request => named_struct(
"timestamp", timestamp,
"sender", from_number,
"text", text),
returnType => "BOOLEAN") AS is_spam
FROM catalog.schema.inbox_messages

Example: Creating your own SQL function that uses ai_query()

The following example creates your own custom SQL function that leverages ai_query() to call
the llama-2-70b foundational model. This example function takes a string as input , leverages
the LLM returns a corrected english string.

Databricks Confidential
45

< databricks

CREATE FUNCTION correct_grammar(text STRING)
RETURNS STRING
RETURN ai_query(
'databricks-1lama-2-70b-chat’,
CONCAT('Correct this to standard English:\n', text))

For additional details checkout
e https://docs.databricks.com/en/large-language-models/how-to-ai-query.html
e https://docs.databricks.com/en/sgl/language-manual/functions/ai _query.html

SQL Al functions

Databricks Al Functions are built-in SQL functions that allow you to apply Al on your data
directly from SQL. These functions invoke a state-of-the-art generative Al model from
Databricks Foundation Model APIs to perform tasks like sentiment analysis, classification and
translation.

For additional details checkout
e hitps://docs.databricks.com/en/large-language-models/ai-functions.html
e https://docs.databricks.com/en/large-language-models/ai-functions-example.html

REST API : Get details on serving endpoints

Get all serving endpoints

e https://docs.databricks.com/api/workspace/servingendpoints/list

e |[f you are interested in Foundational Model api’s or LLM’s, then check for the
o "endpoint_type": "FOUNDATION_MODEL_API" or
o "type": "FOUNDATION_MODEL",

Get a single serving endpoint

e https://docs.databricks.com/api/workspace/servingendpoints/get

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential
46

https://docs.databricks.com/en/large-language-models/how-to-ai-query.html
https://docs.databricks.com/en/sql/language-manual/functions/ai_query.html
https://docs.databricks.com/en/large-language-models/ai-functions.html
https://docs.databricks.com/en/large-language-models/ai-functions-example.html
https://docs.databricks.com/api/workspace/servingendpoints/list
https://docs.databricks.com/api/workspace/servingendpoints/get

< databricks

Python SDK :Get details on serving endpoints

Example code on getting list of foundational models and external models
e https://qgithub.com/prasadkona/databricks-integration-examples/blob/main/src/model_ser
ving/using-databricks-python-sdk-model-serving-endpoints.py

Integrating with Databricks Vector Search

What is Databricks Vector Search?

Databricks Vector Search is a vector database that is built into the Databricks Intelligence
Platform and integrated with its governance and productivity tools. A vector database is a
database that is optimized to store and retrieve embeddings.

With Vector Search, you create a vector search index from a Delta table. The index includes
embedded data with metadata. You can then query the index using a REST API or Python SDK
or LangChain, to identify the most similar vectors and return the associated documents. You can
structure the index to automatically sync when the underlying Delta table is updated.

For more on this refer to https://docs.databricks.com/en/generative-ai/vector-search.html

Query a Vector Search endpoint

Examples on how to call a Databricks Vector Search endpoint using below are available at
https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-se

arch-endpoint

e Python SDK (link to sample notebook)
e REST api
e LangChain (link to LangChain docs)

Databricks Confidential
47

https://github.com/prasadkona/databricks-integration-examples/blob/main/src/model_serving/using-databricks-python-sdk-model-serving-endpoints.py
https://github.com/prasadkona/databricks-integration-examples/blob/main/src/model_serving/using-databricks-python-sdk-model-serving-endpoints.py
https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint
https://docs.databricks.com/en/generative-ai/create-query-vector-search.html#query-a-vector-search-endpoint
https://docs.databricks.com/_extras/notebooks/source/generative-ai/vector-search-python-sdk-example.html
https://python.langchain.com/docs/integrations/vectorstores/databricks_vector_search

< databricks

Models in Unity Catalog

Getting started with models in unity catalog

Models in Unity Catalog extends the benefits of Unity Catalog to ML models, including
centralized access control, auditing, lineage, and model discovery across workspaces. Models
in Unity Catalog is compatible with the open-source MLflow Python client.

Getting started is simple

e Reference models using their three-level naming
o <catalog>.<schema>.<model>

e Models in Unity Catalog are compatible with the MLflow Python client.

e To upgrade ML workflows to target Unity Catalog, simply: Configure MLflow client to
target Unity Catalog
import miflow
miflow.set_registry _uri("databricks-uc")

For additional details checkout
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html

Registering a MLflow Model to Databricks

You can register a MLflow model to Databricks Managed MLflow Model Registry using the
mlflow python package. If you are registering from a MLflow tracking service that you manage,
configure MLflow as you would normally. Then set environment variables for access to
Databricks and set the registry URI to databricks. After that you can call register_model
(docs), passing in the model URI for the run’s model.

import os
import mlflow

os.environ['DATABRICKS_HOST'] = <DATABRICKS WORKSPACE URL>
os.environ['DATABRICKS_TOKEN'] = <DATABRICKS TOKEN>

Databricks Confidential
48

https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html
https://mlflow.org/docs/latest/python_api/mlflow.html#mlflow.register_model

< databricks

mlflow.set registry uri("databricks-uc")
mlflow.register_model('runs://0/d97600326268486daa7el187eee8fc3a2/model"’,
<MODEL NAME>) # model nem in the format <catalog>.<schema>.<model>

If you instead have the file on local disk you can use a model URI using the file schema:
mlflow.register_model('file:path-to-model-directory', <MODEL NAME>)

For additional details checkout
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html

Downloading a MLflow Model from Databricks

To download a MLflow model from Databricks you can use the MLflow python client.
You can set the Databricks authentication and host through

import os
os.environ['DATABRICKS HOST'] = <DATABRICKS WORKSPACE URL>
os.environ['DATABRICKS TOKEN'] = <DATABRICKS TOKEN>

Then set the tracking or registry URI to databricks using
mlflow.set_tracking_uri('databricks') or

mlflow.set registry uri('databricks-uc') depending on whether you are downloading
the model from the tracking service or the model registry.

Finally, call mlflow.artifacts.download_artifacts to download the model.

Monitoring LLM’s and Models on Databricks

Inference Tables

Inference table automatically captures incoming requests and outgoing responses for a model
serving endpoint and logs them as a Unity Catalog Delta table. You can use the data in this
table to monitor, debug, and improve ML models.

Databricks Confidential
49

https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html
https://www.mlflow.org/docs/latest/python_api/mlflow.artifacts.html#mlflow.artifacts.download_artifacts

< databricks

Automatically capture requests and

responses to monitor model performance
= ——— = Inference tables [+ — — — — — 1
| |
. . Evaluate and
Feature Train or retrain > - Serve model
store =ipten

Automated feature lookups simplifies integration

Unity Catalog

Govern all data and ML assets

To learn more about Inference tables
e https://docs.databricks.com/en/machine-learning/model-serving/inference-tables.html

Handling Images

For large image files (average image size greater than 100 MB), Databricks recommends using
the Delta table only to manage the metadata (list of file names) and loading the images from the
object store using their paths when needed.

It is recommended to store the image files (both large and small) on Unity Catalog Volumes.
The delta table stores the path to the image file i.e UC volumes path, s3/adls/gcs path or http
path.

For images and files, Databricks allows you to use the binary file data source to load image data
into the Spark DataFrame as raw bytes. See Reference solution for image applications for the
recommended workflow to handle image data.

In summary, the two ways customers store images on Databricks
1. Delta table which contains file metadata including path where actual file is stored (UC
volumes path, s3/adls/gcs path or http path)

Databricks Confidential
50

https://docs.databricks.com/en/machine-learning/model-serving/inference-tables.html
https://docs.databricks.com/en/query/formats/binary.html
https://docs.databricks.com/en/machine-learning/reference-solutions/images-etl-inference.html

< databricks

2. Delta table having a column of type binary to store the content of the image file (Check
the reference solution notebook above). Not recommended for files larger than 100MB)

Databricks Confidential
51

< databricks

Guidance based on product category

Data Labeling and Generation (Human & Synthetic)

Basic
e Publish data from Databricks to labeling tool
o Recommended approach:

m For text data, we recommend Delta tables or UC volumes or Delta
Sharing.

m Forimage or other binary data, we recommend a combination of a
metadata table along with references to paths in distributed file
storage (UC Volumes - recommended, s3/adls/gcs path, http
path).

e Check section on “Handling Images”

m Partner tools can use databricks connectors, sdk’s or drivers to
query for data on databricks.

m Delta Sharing should be considered if the customer wants to
securely share a single copy of data with a partner tool. No need
to push data to partner tool

o Alternative approach:

m Use an upload API to publish data to your product, and provide an
example notebook for doing so. For example, provide a python
library.

e Publish data from the partner tool into Databricks
m Recommended approach:

e Directly publish tables or updates to tables to the customer’s
account as labeling happens. See the “Ingesting data into Delta”
section of ISV Integration Best Practices and “Unity Catalog Guide
for ISV Partners”

o Allow an admin to specify a schema within a catalog to

publish labels generated

o Ingest the data into a table on databricks
m Leverage databricks sdk or connector or driver
m Upload staging file to uc volumes (using the put

api’s provided by the connector/sdl/driver)
m Execute SQL Copy-into the target table
m Alternative approach:

e Provide a library the customers can use on Databricks to pull your

APls and create a Spark Dataframe they can write to Delta.
o Provide example notebooks and documentation

Databricks Confidential
52

< databricks

o Use standard label formats wherever possible - e.g formats compatible with
popular model training tools.

Advanced
e Integrate into item selection, model assisted labeling, human-in-the-loop
workflows, through sample notebooks
e Integrate as part of the RAG studio workflow
e Integrate with Partner Connect

Natural Language Processing

Basic

e Model training and/or fine tuning can be run directly in Databricks or invoked from
Databricks

e Model training and/or fine tuning metrics/parameters logged to MLflow tracking
service, preferably through autologging. Consider working with the MLflow open
source community to add autologging capabilities for your libraries, especially for
open source libraries.

e Models can be logged as a MLflow model, either through the built-in flavors
specific to your library (or add support for your library), or the base python
function support.

e Logged models can be used in batch inference on Spark.

e Provide sample notebooks for these operations

Advanced

e Logged models can be used with Serverless Real Time Inference(SRTI)

o Avoid requiring Java library, as SRTI currently does not support Java
library dependencies.

Model Training Tools or Model hubs

Basic
e Examples and documentation for loading and using models for inference on
Databricks
If applicable, examples and documentation for fine tuning models on Databricks
Models can be logged as a MLflow model, either through the built-in flavors
specific to your library (or add support for your library), or the base python
function support.
Advanced
e Models can be registered to Databricks’ Model Regqistry directly from your tool
e Publish the models to Databricks marketplace (for models)

Databricks Confidential
53

https://www.mlflow.org/docs/latest/tracking.html#automatic-logging
https://www.mlflow.org/docs/latest/models.html
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://www.mlflow.org/docs/latest/models.html
https://www.mlflow.org/docs/latest/models.html#built-in-model-flavors
https://docs.google.com/document/d/1aH3AAeEL7wOCBRqZH8mckLtdV0OEtcWxYDtNXBaH1KM/edit#bookmark=kix.xu4lcs38ge96

< databricks

Reference Blogs and links

Misc
https://www.databricks.com/blog/accelerating-your-deep-learning-pytorch-lightning-databricks

Big book of ml-ops
https://www.databricks.com/resources/ebook/the-big-book-of-mlops

© 2023, Databricks Inc., All Rights Reserved.
Databricks Confidential

54

https://www.databricks.com/blog/accelerating-your-deep-learning-pytorch-lightning-databricks
https://www.databricks.com/resources/ebook/the-big-book-of-mlops

< databricks

Data Sharing - Delta Sharing

S

databricks
Lakehouse Platform

How to share

lakehouse data ?

{REST:APT} = [«~[] ie}
A --------- o Bl e [e
Authenticate Business Customers/
App/Fro External users
DELTA LAKE / ApplFront- xtornal user
.,]
aws Google Cloud Sharing Sarve Delta Sharing
h Client (C++,
B Microsoft Azure Mode.js, Rust)
*Classic or Serverless Compute
**(Only Serverless) Private Preview
SQL Delta Sharing REST API

Data formats supported:
* Delta, Iceberg, Hudi,
Parquet, csv, and
more
Costs:
* Provider pays
compute cost
* Provide pays egress
cost (small)

Data formats supported:
« Delta only
Costs:
+ Consumer pays the
compute cost
* Provider pays
egress cost
Additional

Data formats supported:
* Delta, Iceberg, Hudi,
Parquet, csv, and
more
Costs:
* Provider pays
compute cost
* Provide pays egress

cost (small)

© 2023, Databricks Inc., All Rights Reserved.

Databricks Confidential

55

< databricks

Additional considerations:
* Datasetsizeis
limited
* Data will be ingested
sequentially
¢ Only supports SQL
Authentication:
* Databricks platform
token

considerations:
* No Data size limit
* Replication
recommended for

AZ distance
limitations
Authentication:
* Within the

Databricks platform,
secured by the
metastore IDs and
databricks VPN

* Qutside of the
platform
Delta Sharing
credential token

Additional
considerations:
+ Data set size is
limited
« Data will be
ingested
sequentially
* Leverages ML
Serving as REST API
endpoint
* Accessible
anywhere import
package can be run
* No dependencies
on Databricks
Partner team to
launch
Authentication:
* Databricks platform
token

Sharing via SQL

There are different ways to access the data in the Lakehouse via SQL. These are described in SQL

based integrations section.

Sharing via REST API

With the new ML Serving and the upcoming data serving service you can serve your data via REST API

directly from your Lakehouse.

ML Serving relies on Databricks Serverless offering, there’s a need to enable it first in the account

console.

See the Model Inference public docs for more information

Databricks Confidential

56

https://docs.databricks.com/machine-learning/model-inference/index.html

< databricks

Sharing via Delta Sharing

As a Provider

Delta Sharing support sharing tables and will soon support other data assets such as
notebooks, models, files, and more
The Databricks platform offers a managed Delta Sharing service at no additional cost.

Requirement
e You have to have Unity Catalog configured and a metastore attached to the workspace
e You enabled sharing on your metastore
e As of now Delta format is the only format supported by Delta Sharing. It is easy to
autoload your data into Delta
e Your storage cannot prevent external access. You should not allow any public access,
but have to enable access via IAM role, Firewalls, or other settings.

Sharing can be done from your Databricks platform to your consumer Databrick platform. The
instructions are detailed here

Sharing can be done outside of your consumer Databrick plastform as well. You can restrict the
access to a predefined network CIDR range if neede. Detailed instructions can be found here

Optional configuration:
You can create an isolated environment to share the data.
e A separate bucket to hold the data being shared. There’s no need to create another copy
of the table, your core table can resides in this bucket - ready to be shared

As a Consumer

The data shared with you can be consumed in different ways.

The easiest way is to get the data connected in your Databricks metastore. You'll need a Unity
Catalog metastore to get started.

You do not have to enable Delta Sharing as a consumer but you will have to make sure that you
can access the provider storage (Keep in mind that data can be shared from a different cloud).

Accepting a share:
e You must be a metastore admin or have the USE PROVIDER privilege
e You can use the Ul to accept the share and mount this as a catalog or the Delta Sharing
REST API.
e Once the share is mounted to a catalog you’ll manage it the same way you manage any
other catalog

Databricks Confidential
57

https://docs.databricks.com/data-governance/unity-catalog/index.html
https://docs.databricks.com/data-governance/unity-catalog/index.html#metastore
https://docs.databricks.com/data-sharing/set-up.html#enable-delta-sharing-for-your-account
https://docs.databricks.com/ingestion/index.html
https://docs.databricks.com/data-sharing/share-data-databricks.html
https://docs.databricks.com/data-sharing/share-data-open.html
https://docs.databricks.com/data-sharing/read-data-databricks.html#read-data-shared-using-databricks-to-databricks-delta-sharing

< databricks

e The tables are now accessible similar to any other local table

You can also consume the data outside of your Databricks platform. See this documentation to
get started

OAuth - ISV product integration best practices

Document available in folder
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBaYZBFcGdB

UC Volumes based staging locations - ISV product
integration best practices

Document available in folder
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBqYZBFcGdB

UC personal staging locations [Deprecated] - ISV
product integration best practices

Document available in folder
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBaYZBFcGdB

Reachout and get approval from Partner SA before using this feature

Governance & Observability

Document named UC best practices available in folder
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBqYZBFcGdB

Databricks Confidential
58

https://docs.databricks.com/data-sharing/read-data-open.html
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBqYZBFcGdB
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBqYZBFcGdB
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBqYZBFcGdB
https://drive.google.com/drive/u/0/folders/1BMHK-xwLd1fSL38C-4Y53QBqYZBFcGdB

< databricks

Resources

Resources around Delta and Databricks SQL

Here are some useful links for integrating with Databricks using SQL

Databricks Delta Documentation
o https://docs.databricks.com/delta/index.html

Delta Quickstart notebook
o https://docs.databricks.com/delta/intro-notebooks.html#delta-lake-quickstart-sql-notebook

SQL Reference
o https://docs.databricks.com/sql/language-manual/index.html

Copy Into command to ingest new data into Delta
o https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-copy-into.html

Merge command examples
o https://docs.databricks.com/delta/delta-update.htmli#merge-examples
o https://docs.databricks.com/delta/delta-update.html#upsert-into-a-table-using-merge
o https://docs.databricks.com/delta/delta-update.html#!#write-change-data-into-a-delta-tabl
e

Setting and retrieving table commit metadata
o Use the following to query for the table history. userMetadata is one of the output
attributes for history.
m https://docs.databricks.com/delta/delta-utility.html#retrieve-delta-table-history
o Details on Set user-defined commit metadata at
m https://docs.databricks.com/delta/delta-batch.html#write-to-a-table

Quickstarts around Clusters

Databricks Confidential
59

https://docs.databricks.com/delta/delta-utility.html#retrieve-delta-table-history

< databricks

Cluster log delivery

When you create a cluster, you can specify a location to deliver Spark driver, worker, and event logs. Logs
are delivered every five minutes to your chosen destination. When a cluster is terminated, Databricks
guarantees to deliver all logs generated up until the cluster was terminated.

The destination of the logs depends on the cluster ID. If the specified destination is
dbfs:/cluster-log-delivery, cluster logs for 0630-191345-leap375 are delivered to
dbfs:/cluster-log-delivery/0630-191345-leap375

If you choose an S3 destination for cluster logs, you must configure the cluster with an instance profile
that can access the bucket. This instance profile must have both the PutObject and PutObjectAcl
permissions

Additional information
e Setting up cluster log delivery:
https://docs.databricks.com/dev-tools/api/latest/examples.html#cluster-log-delivery-examples
e Cluster log delivery: https://docs.databricks.com/clusters/configure.html#cluster-log-delivery-1

Setting log level

Details on how to turn up log level for executors

https://kb.databricks.com/execution/set-executor-log-level.html#

To set the log level on all executors, set it inside the JVM on each worker.
Execute the code below to set it:

Y%scala

sc.parallelize(Seq("")).foreachPartition(x => {
import org.apache.log4j.{LogManager, Level}
import org.apache.commons.logging.LogFactory

LogManager.getRootLogger().setLevel(Level. DEBUG)
val log = LogFactory.getLog("EXECUTOR-LOG:")
log.debug("START EXECUTOR DEBUG LOG LEVEL")

)

Databricks Confidential
60

https://docs.databricks.com/dev-tools/api/latest/examples.html#cluster-log-delivery-examples
https://docs.databricks.com/clusters/configure.html#cluster-log-delivery-1
https://kb.databricks.com/execution/set-executor-log-level.html#

< databricks

To verify that the level is set, navigate to the Spark Ul, select the Executors tab, and open the stderr log

for any executor.

To set the log level on a JVM

Y%scala
import org.apache.log4j.{LogManager, Level}
import org.apache.commons.logging.LogFactory

LogManager.getRootLogger () .setLevel (Level.DEBUG)
val log = LogFactory.getLog ("EXECUTOR-LOG:")
log.debug ("START EXECUTOR DEBUG LOG LEVEL")

FAQ

1. Where to get Databricks Logo files?
o Download the files from the Databricks brand portal at
https://brand.databricks.com/databricks-brand-guidelines/visualsystem

Databricks Confidential

61

https://brand.databricks.com/databricks-brand-guidelines/visualsystem

