Voorspellingen implementeren en doen met een ONNX-model en SQL Machine Learning
Belangrijk
Azure SQL Edge wordt op 30 september 2025 buiten gebruik gesteld. Zie de kennisgeving buitengebruikstelling voor meer informatie en migratieopties.
Notitie
Azure SQL Edge biedt geen ondersteuning meer voor het ARM64-platform.
In deze quickstart leert u hoe u een model traint, converteert naar ONNX, implementeert in Azure SQL Edge en vervolgens systeemeigen PREDICT uitvoert op gegevens met behulp van het geüploade ONNX-model.
Deze quickstart is gebaseerd op scikit-learn en maakt gebruik van de Boston Housing-gegevensset.
Voordat u begint
Als u Azure SQL Edge gebruikt en u nog geen Azure SQL Edge-module hebt geïmplementeerd, volgt u de stappen voor het implementeren van SQL Edge met behulp van Azure Portal.
Installeer Azure Data Studio.
Python-pakketten installeren die nodig zijn voor deze quickstart:
- Open nieuw notebook dat is verbonden met de Python 3-kernel.
- Pakketten beheren selecteren
- Zoek op het tabblad Geïnstalleerd naar de volgende Python-pakketten in de lijst met geïnstalleerde pakketten. Als een van deze pakketten niet is geïnstalleerd, selecteert u het tabblad Nieuwe toevoegen, zoekt u het pakket en selecteert u Installeren.
- scikit-learn
- numpy
- onnxmltools
- onnxruntime
- pyodbc
- setuptools
- skl2onnx
- sqlalchemy
Voer voor elk scriptonderdeel in de volgende secties deze in een cel in het Azure Data Studio-notebook in en voer de cel uit.
Een pijplijn trainen
Splits de gegevensset om functies te gebruiken om de mediaanwaarde van een huis te voorspellen.
import numpy as np
import onnxmltools
import onnxruntime as rt
import pandas as pd
import skl2onnx
import sklearn
import sklearn.datasets
from sklearn.datasets import load_boston
boston = load_boston()
boston
df = pd.DataFrame(data=np.c_[boston['data'], boston['target']], columns=boston['feature_names'].tolist() + ['MEDV'])
target_column = 'MEDV'
# Split the data frame into features and target
x_train = pd.DataFrame(df.drop([target_column], axis = 1))
y_train = pd.DataFrame(df.iloc[:,df.columns.tolist().index(target_column)])
print("\n*** Training dataset x\n")
print(x_train.head())
print("\n*** Training dataset y\n")
print(y_train.head())
Uitvoer:
*** Training dataset x
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0
PTRATIO B LSTAT
0 15.3 396.90 4.98
1 17.8 396.90 9.14
2 17.8 392.83 4.03
3 18.7 394.63 2.94
4 18.7 396.90 5.33
*** Training dataset y
0 24.0
1 21.6
2 34.7
3 33.4
4 36.2
Name: MEDV, dtype: float64
Maak een pijplijn om het LinearRegression-model te trainen. U kunt ook andere regressiemodellen gebruiken.
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
continuous_transformer = Pipeline(steps=[('scaler', RobustScaler())])
# All columns are numeric - normalize them
preprocessor = ColumnTransformer(
transformers=[
('continuous', continuous_transformer, [i for i in range(len(x_train.columns))])])
model = Pipeline(
steps=[
('preprocessor', preprocessor),
('regressor', LinearRegression())])
# Train the model
model.fit(x_train, y_train)
Controleer de nauwkeurigheid van het model en bereken vervolgens de R2-score en gemiddelde kwadratische fout.
# Score the model
from sklearn.metrics import r2_score, mean_squared_error
y_pred = model.predict(x_train)
sklearn_r2_score = r2_score(y_train, y_pred)
sklearn_mse = mean_squared_error(y_train, y_pred)
print('*** Scikit-learn r2 score: {}'.format(sklearn_r2_score))
print('*** Scikit-learn MSE: {}'.format(sklearn_mse))
Uitvoer:
*** Scikit-learn r2 score: 0.7406426641094094
*** Scikit-learn MSE: 21.894831181729206
Het model converteren naar ONNX
Converteer de gegevenstypen naar de ondersteunde SQL-gegevenstypen. Deze conversie is ook vereist voor andere dataframes.
from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, DoubleTensorType
def convert_dataframe_schema(df, drop=None, batch_axis=False):
inputs = []
nrows = None if batch_axis else 1
for k, v in zip(df.columns, df.dtypes):
if drop is not None and k in drop:
continue
if v == 'int64':
t = Int64TensorType([nrows, 1])
elif v == 'float32':
t = FloatTensorType([nrows, 1])
elif v == 'float64':
t = DoubleTensorType([nrows, 1])
else:
raise Exception("Bad type")
inputs.append((k, t))
return inputs
Converteer met behulp skl2onnx
van het LinearRegression-model naar de ONNX-indeling en sla het lokaal op.
# Convert the scikit model to onnx format
onnx_model = skl2onnx.convert_sklearn(model, 'Boston Data', convert_dataframe_schema(x_train), final_types=[('variable1',FloatTensorType([1,1]))])
# Save the onnx model locally
onnx_model_path = 'boston1.model.onnx'
onnxmltools.utils.save_model(onnx_model, onnx_model_path)
Notitie
Mogelijk moet u de target_opset
parameter voor de skl2onnx.convert_sklearn-functie instellen als er een niet-overeenkomende ONNX-runtimeversie in SQL Edge en skl2onnx packge is. Zie de releaseopmerkingen voor SQL Edge om de ONNX-runtimeversie op te halen die overeenkomt met de release en kies de target_opset
onnx-runtime op basis van de ONNX-compatibiliteitsmatrix voor eerdere versies.
Het ONNX-model testen
Nadat het model is geconverteerd naar de ONNX-indeling, moet u het model beoordelen om weinig tot geen verslechtering van de prestaties weer te geven.
Notitie
ONNX Runtime maakt gebruik van floats in plaats van doubles, zodat kleine verschillen mogelijk zijn.
import onnxruntime as rt
sess = rt.InferenceSession(onnx_model_path)
y_pred = np.full(shape=(len(x_train)), fill_value=np.nan)
for i in range(len(x_train)):
inputs = {}
for j in range(len(x_train.columns)):
inputs[x_train.columns[j]] = np.full(shape=(1,1), fill_value=x_train.iloc[i,j])
sess_pred = sess.run(None, inputs)
y_pred[i] = sess_pred[0][0][0]
onnx_r2_score = r2_score(y_train, y_pred)
onnx_mse = mean_squared_error(y_train, y_pred)
print()
print('*** Onnx r2 score: {}'.format(onnx_r2_score))
print('*** Onnx MSE: {}\n'.format(onnx_mse))
print('R2 Scores are equal' if sklearn_r2_score == onnx_r2_score else 'Difference in R2 scores: {}'.format(abs(sklearn_r2_score - onnx_r2_score)))
print('MSE are equal' if sklearn_mse == onnx_mse else 'Difference in MSE scores: {}'.format(abs(sklearn_mse - onnx_mse)))
print()
Uitvoer:
*** Onnx r2 score: 0.7406426691136831
*** Onnx MSE: 21.894830759270633
R2 Scores are equal
MSE are equal
Het ONNX-model invoegen
Sla het model op in Azure SQL Edge, in een models
tabel in een database onnx
. Geef in de verbindingsreeks het serveradres, de gebruikersnaam en het wachtwoord op.
import pyodbc
server = '' # SQL Server IP address
username = '' # SQL Server username
password = '' # SQL Server password
# Connect to the master DB to create the new onnx database
connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=master;UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(connection_string, autocommit=True)
cursor = conn.cursor()
database = 'onnx'
query = 'DROP DATABASE IF EXISTS ' + database
cursor.execute(query)
conn.commit()
# Create onnx database
query = 'CREATE DATABASE ' + database
cursor.execute(query)
conn.commit()
# Connect to onnx database
db_connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=" + database + ";UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(db_connection_string, autocommit=True)
cursor = conn.cursor()
table_name = 'models'
# Drop the table if it exists
query = f'drop table if exists {table_name}'
cursor.execute(query)
conn.commit()
# Create the model table
query = f'create table {table_name} ( ' \
f'[id] [int] IDENTITY(1,1) NOT NULL, ' \
f'[data] [varbinary](max) NULL, ' \
f'[description] varchar(1000))'
cursor.execute(query)
conn.commit()
# Insert the ONNX model into the models table
query = f"insert into {table_name} ([description], [data]) values ('Onnx Model',?)"
model_bits = onnx_model.SerializeToString()
insert_params = (pyodbc.Binary(model_bits))
cursor.execute(query, insert_params)
conn.commit()
De gegevens laden
Laad de gegevens in SQL.
Maak eerst twee tabellen, functies en doel om subsets van de Boston-gegevensset voor huisvesting op te slaan.
- Functies bevatten alle gegevens die worden gebruikt om het doel, de mediaanwaarde te voorspellen.
- Het doel bevat de mediaanwaarde voor elke record in de gegevensset.
import sqlalchemy
from sqlalchemy import create_engine
import urllib
db_connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=" + database + ";UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(db_connection_string)
cursor = conn.cursor()
features_table_name = 'features'
# Drop the table if it exists
query = f'drop table if exists {features_table_name}'
cursor.execute(query)
conn.commit()
# Create the features table
query = \
f'create table {features_table_name} ( ' \
f' [CRIM] float, ' \
f' [ZN] float, ' \
f' [INDUS] float, ' \
f' [CHAS] float, ' \
f' [NOX] float, ' \
f' [RM] float, ' \
f' [AGE] float, ' \
f' [DIS] float, ' \
f' [RAD] float, ' \
f' [TAX] float, ' \
f' [PTRATIO] float, ' \
f' [B] float, ' \
f' [LSTAT] float, ' \
f' [id] int)'
cursor.execute(query)
conn.commit()
target_table_name = 'target'
# Create the target table
query = \
f'create table {target_table_name} ( ' \
f' [MEDV] float, ' \
f' [id] int)'
x_train['id'] = range(1, len(x_train)+1)
y_train['id'] = range(1, len(y_train)+1)
print(x_train.head())
print(y_train.head())
Ten slotte kunt sqlalchemy
u de gegevensframes van y_train
pandas x_train
invoegen in de tabellen features
en target
, respectievelijk.
db_connection_string = 'mssql+pyodbc://' + username + ':' + password + '@' + server + '/' + database + '?driver=ODBC+Driver+17+for+SQL+Server'
sql_engine = sqlalchemy.create_engine(db_connection_string)
x_train.to_sql(features_table_name, sql_engine, if_exists='append', index=False)
y_train.to_sql(target_table_name, sql_engine, if_exists='append', index=False)
U kunt nu de gegevens in de database bekijken.
PREDICT uitvoeren met behulp van het ONNX-model
Voer met het model in SQL systeemeigen PREDICT uit op de gegevens met behulp van het geüploade ONNX-model.
Notitie
Wijzig de notebook-kernel in SQL om de resterende cel uit te voeren.
USE onnx
DECLARE @model VARBINARY(max) = (
SELECT DATA
FROM dbo.models
WHERE id = 1
);
WITH predict_input
AS (
SELECT TOP (1000) [id],
CRIM,
ZN,
INDUS,
CHAS,
NOX,
RM,
AGE,
DIS,
RAD,
TAX,
PTRATIO,
B,
LSTAT
FROM [dbo].[features]
)
SELECT predict_input.id,
p.variable1 AS MEDV
FROM PREDICT(MODEL = @model, DATA = predict_input, RUNTIME = ONNX) WITH (variable1 FLOAT) AS p;