Delen via


Migreren naar de OpenAI Python API-bibliotheek 1.x

OpenAI heeft een nieuwe versie van de OpenAI Python API-bibliotheek uitgebracht. Deze handleiding is een aanvulling op de migratiehandleiding van OpenAI en helpt u bij het versnellen van de wijzigingen die specifiek zijn voor Azure OpenAI.

Updates

  • Dit is een nieuwe versie van de OpenAI Python API-bibliotheek.
  • Vanaf 6 november 2023 pip install openai wordt pip install openai --upgrade de OpenAI Python-bibliotheek geïnstalleerd version 1.x .
  • Upgraden van version 0.28.1 naar version 1.x is een belangrijke wijziging. U moet uw code testen en bijwerken.
  • Automatisch opnieuw proberen met uitstel als er een fout optreedt
  • Juiste typen (voor mypy/pyright/editors)
  • U kunt nu een instantie van een client maken in plaats van een globale standaardwaarde te gebruiken.
  • Overschakelen naar expliciete clientinstantie
  • Naamwijzigingen

Bekende problemen

Testen voordat u migreert

Belangrijk

Automatische migratie van uw code die wordt gebruikt openai migrate , wordt niet ondersteund met Azure OpenAI.

Aangezien dit een nieuwe versie van de bibliotheek is met belangrijke wijzigingen, moet u uw code uitgebreid testen op basis van de nieuwe release voordat u productietoepassingen migreert om te vertrouwen op versie 1.x. U moet ook uw code en interne processen controleren om ervoor te zorgen dat u de aanbevolen procedures volgt en uw productiecode vastmaken aan alleen versies die u volledig hebt getest.

Om het migratieproces eenvoudiger te maken, werken we bestaande codevoorbeelden in onze documenten voor Python bij naar een ervaring met tabbladen:

pip install openai --upgrade

Dit biedt context voor wat er is gewijzigd en stelt u in staat om de nieuwe bibliotheek parallel te testen terwijl u ondersteuning blijft bieden voor versie 0.28.1. Als u een upgrade uitvoert naar 1.x en realiseert dat u tijdelijk moet terugkeren naar de vorige versie, kunt u altijd pip uninstall openai en opnieuw installeren waarop pip install openai==0.28.1is gericht0.28.1.

Chatvoltooiingen

U moet de model variabele instellen op de implementatienaam die u hebt gekozen bij het implementeren van de GPT-3.5-Turbo- of GPT-4-modellen. Als u de modelnaam invoert, treedt er een fout op, tenzij u een implementatienaam hebt gekozen die identiek is aan de naam van het onderliggende model.

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"), 
  api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version="2024-02-01"
)

response = client.chat.completions.create(
    model="gpt-35-turbo", # model = "deployment_name"
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
        {"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
        {"role": "user", "content": "Do other Azure AI services support this too?"}
    ]
)

print(response.choices[0].message.content)

Meer voorbeelden vindt u in ons uitgebreide artikel over chatvoltooiing.

Voltooiingen

import os
from openai import AzureOpenAI
    
client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_API_KEY"),  
    api_version="2024-02-01",
    azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
    
deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model. 
    
# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=10) # model = "deployment_name"
print(response.choices[0].text)

Insluitingen

import os
from openai import AzureOpenAI

client = AzureOpenAI(
  api_key = os.getenv("AZURE_OPENAI_API_KEY"),  
  api_version = "2024-02-01",
  azure_endpoint =os.getenv("AZURE_OPENAI_ENDPOINT") 
)

response = client.embeddings.create(
    input = "Your text string goes here",
    model= "text-embedding-ada-002"  # model = "deployment_name".
)

print(response.model_dump_json(indent=2))

Aanvullende voorbeelden, waaronder het afhandelen van semantische tekstzoekopdrachten zonder embeddings_utils.py deze te vinden zijn in onze zelfstudie over insluitingen.

Async

OpenAI biedt geen ondersteuning voor het aanroepen van asynchrone methoden in de client op moduleniveau. In plaats daarvan moet u een asynchrone client instantiëren.

import os
import asyncio
from openai import AsyncAzureOpenAI

async def main():
    client = AsyncAzureOpenAI(  
      api_key = os.getenv("AZURE_OPENAI_API_KEY"),  
      api_version = "2024-02-01",
      azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
    )
    response = await client.chat.completions.create(model="gpt-35-turbo", messages=[{"role": "user", "content": "Hello world"}]) # model = model deployment name

    print(response.model_dump_json(indent=2))

asyncio.run(main())

Verificatie

from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from openai import AzureOpenAI

token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")

api_version = "2024-02-01"
endpoint = "https://my-resource.openai.azure.com"

client = AzureOpenAI(
    api_version=api_version,
    azure_endpoint=endpoint,
    azure_ad_token_provider=token_provider,
)

completion = client.chat.completions.create(
    model="deployment-name",  # model = "deployment_name"
    messages=[
        {
            "role": "user",
            "content": "How do I output all files in a directory using Python?",
        },
    ],
)
print(completion.model_dump_json(indent=2))

Uw gegevens gebruiken

Raadpleeg de quickstart voor het gebruik van uw gegevens voor de volledige configuratiestappen die nodig zijn om deze codevoorbeelden te laten werken.

import os
import openai
import dotenv

dotenv.load_dotenv()

endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT")
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
deployment = os.environ.get("AZURE_OPEN_AI_DEPLOYMENT_ID")

client = openai.AzureOpenAI(
    base_url=f"{endpoint}/openai/deployments/{deployment}/extensions",
    api_key=api_key,
    api_version="2023-08-01-preview",
)

completion = client.chat.completions.create(
    model=deployment, # model = "deployment_name"
    messages=[
        {
            "role": "user",
            "content": "How is Azure machine learning different than Azure OpenAI?",
        },
    ],
    extra_body={
        "dataSources": [
            {
                "type": "AzureCognitiveSearch",
                "parameters": {
                    "endpoint": os.environ["AZURE_AI_SEARCH_ENDPOINT"],
                    "key": os.environ["AZURE_AI_SEARCH_API_KEY"],
                    "indexName": os.environ["AZURE_AI_SEARCH_INDEX"]
                }
            }
        ]
    }
)

print(completion.model_dump_json(indent=2))

Oplossing voor DALL-E

import time
import json
import httpx
import openai


class CustomHTTPTransport(httpx.HTTPTransport):
    def handle_request(
        self,
        request: httpx.Request,
    ) -> httpx.Response:
        if "images/generations" in request.url.path and request.url.params[
            "api-version"
        ] in [
            "2023-06-01-preview",
            "2023-07-01-preview",
            "2023-08-01-preview",
            "2023-09-01-preview",
            "2023-10-01-preview",
        ]:
            request.url = request.url.copy_with(path="/openai/images/generations:submit")
            response = super().handle_request(request)
            operation_location_url = response.headers["operation-location"]
            request.url = httpx.URL(operation_location_url)
            request.method = "GET"
            response = super().handle_request(request)
            response.read()

            timeout_secs: int = 120
            start_time = time.time()
            while response.json()["status"] not in ["succeeded", "failed"]:
                if time.time() - start_time > timeout_secs:
                    timeout = {"error": {"code": "Timeout", "message": "Operation polling timed out."}}
                    return httpx.Response(
                        status_code=400,
                        headers=response.headers,
                        content=json.dumps(timeout).encode("utf-8"),
                        request=request,
                    )

                time.sleep(int(response.headers.get("retry-after")) or 10)
                response = super().handle_request(request)
                response.read()

            if response.json()["status"] == "failed":
                error_data = response.json()
                return httpx.Response(
                    status_code=400,
                    headers=response.headers,
                    content=json.dumps(error_data).encode("utf-8"),
                    request=request,
                )

            result = response.json()["result"]
            return httpx.Response(
                status_code=200,
                headers=response.headers,
                content=json.dumps(result).encode("utf-8"),
                request=request,
            )
        return super().handle_request(request)


client = openai.AzureOpenAI(
    azure_endpoint="<azure_endpoint>",
    api_key="<api_key>",
    api_version="<api_version>",
    http_client=httpx.Client(
        transport=CustomHTTPTransport(),
    ),
)
image = client.images.generate(prompt="a cute baby seal")

print(image.data[0].url)

Naamwijzigingen

Notitie

Alle a* methoden zijn verwijderd; de asynchrone client moet worden gebruikt.

OpenAI Python 0.28.1 OpenAI Python 1.x
openai.api_base openai.base_url
openai.proxy openai.proxies
openai.InvalidRequestError openai.BadRequestError
openai.Audio.transcribe() client.audio.transcriptions.create()
openai.Audio.translate() client.audio.translations.create()
openai.ChatCompletion.create() client.chat.completions.create()
openai.Completion.create() client.completions.create()
openai.Edit.create() client.edits.create()
openai.Embedding.create() client.embeddings.create()
openai.File.create() client.files.create()
openai.File.list() client.files.list()
openai.File.retrieve() client.files.retrieve()
openai.File.download() client.files.retrieve_content()
openai.FineTune.cancel() client.fine_tunes.cancel()
openai.FineTune.list() client.fine_tunes.list()
openai.FineTune.list_events() client.fine_tunes.list_events()
openai.FineTune.stream_events() client.fine_tunes.list_events(stream=True)
openai.FineTune.retrieve() client.fine_tunes.retrieve()
openai.FineTune.delete() client.fine_tunes.delete()
openai.FineTune.create() client.fine_tunes.create()
openai.FineTuningJob.create() client.fine_tuning.jobs.create()
openai.FineTuningJob.cancel() client.fine_tuning.jobs.cancel()
openai.FineTuningJob.delete() client.fine_tuning.jobs.create()
openai.FineTuningJob.retrieve() client.fine_tuning.jobs.retrieve()
openai.FineTuningJob.list() client.fine_tuning.jobs.list()
openai.FineTuningJob.list_events() client.fine_tuning.jobs.list_events()
openai.Image.create() client.images.generate()
openai.Image.create_variation() client.images.create_variation()
openai.Image.create_edit() client.images.edit()
openai.Model.list() client.models.list()
openai.Model.delete() client.models.delete()
openai.Model.retrieve() client.models.retrieve()
openai.Moderation.create() client.moderations.create()
openai.api_resources openai.resources

Verwijderd

  • openai.api_key_path
  • openai.app_info
  • openai.debug
  • openai.log
  • openai.OpenAIError
  • openai.Audio.transcribe_raw()
  • openai.Audio.translate_raw()
  • openai.ErrorObject
  • openai.Customer
  • openai.api_version
  • openai.verify_ssl_certs
  • openai.api_type
  • openai.enable_telemetry
  • openai.ca_bundle_path
  • openai.requestssession (OpenAI gebruikt httpxnu )
  • openai.aiosession (OpenAI gebruikt httpxnu )
  • openai.Deployment (Eerder gebruikt voor Azure OpenAI)
  • openai.Engine
  • openai.File.find_matching_files()