Migreren naar de OpenAI Python API-bibliotheek 1.x
OpenAI heeft een nieuwe versie van de OpenAI Python API-bibliotheek uitgebracht. Deze handleiding is een aanvulling op de migratiehandleiding van OpenAI en helpt u bij het versnellen van de wijzigingen die specifiek zijn voor Azure OpenAI.
Updates
- Dit is een nieuwe versie van de OpenAI Python API-bibliotheek.
- Vanaf 6 november 2023
pip install openai
wordtpip install openai --upgrade
de OpenAI Python-bibliotheek geïnstalleerdversion 1.x
. - Upgraden van
version 0.28.1
naarversion 1.x
is een belangrijke wijziging. U moet uw code testen en bijwerken. - Automatisch opnieuw proberen met uitstel als er een fout optreedt
- Juiste typen (voor mypy/pyright/editors)
- U kunt nu een instantie van een client maken in plaats van een globale standaardwaarde te gebruiken.
- Overschakelen naar expliciete clientinstantie
- Naamwijzigingen
Bekende problemen
DALL-E3
wordt volledig ondersteund met de nieuwste versie van 1.x.DALL-E2
kan worden gebruikt met 1.x door de volgende wijzigingen aan te brengen in uw code.embeddings_utils.py
die is gebruikt om functionaliteit te bieden, zoals cosinus-overeenkomsten voor semantische tekstzoekopdrachten, maakt geen deel meer uit van de OpenAI Python API-bibliotheek.- Controleer ook de actieve GitHub-problemen voor de OpenAI Python-bibliotheek.
Testen voordat u migreert
Belangrijk
Automatische migratie van uw code die wordt gebruikt openai migrate
, wordt niet ondersteund met Azure OpenAI.
Aangezien dit een nieuwe versie van de bibliotheek is met belangrijke wijzigingen, moet u uw code uitgebreid testen op basis van de nieuwe release voordat u productietoepassingen migreert om te vertrouwen op versie 1.x. U moet ook uw code en interne processen controleren om ervoor te zorgen dat u de aanbevolen procedures volgt en uw productiecode vastmaken aan alleen versies die u volledig hebt getest.
Om het migratieproces eenvoudiger te maken, werken we bestaande codevoorbeelden in onze documenten voor Python bij naar een ervaring met tabbladen:
pip install openai --upgrade
Dit biedt context voor wat er is gewijzigd en stelt u in staat om de nieuwe bibliotheek parallel te testen terwijl u ondersteuning blijft bieden voor versie 0.28.1
. Als u een upgrade uitvoert naar 1.x
en realiseert dat u tijdelijk moet terugkeren naar de vorige versie, kunt u altijd pip uninstall openai
en opnieuw installeren waarop pip install openai==0.28.1
is gericht0.28.1
.
Chatvoltooiingen
U moet de model
variabele instellen op de implementatienaam die u hebt gekozen bij het implementeren van de GPT-3.5-Turbo- of GPT-4-modellen. Als u de modelnaam invoert, treedt er een fout op, tenzij u een implementatienaam hebt gekozen die identiek is aan de naam van het onderliggende model.
import os
from openai import AzureOpenAI
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01"
)
response = client.chat.completions.create(
model="gpt-35-turbo", # model = "deployment_name"
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Does Azure OpenAI support customer managed keys?"},
{"role": "assistant", "content": "Yes, customer managed keys are supported by Azure OpenAI."},
{"role": "user", "content": "Do other Azure AI services support this too?"}
]
)
print(response.choices[0].message.content)
Meer voorbeelden vindt u in ons uitgebreide artikel over chatvoltooiing.
Voltooiingen
import os
from openai import AzureOpenAI
client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version="2024-02-01",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model.
# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=10) # model = "deployment_name"
print(response.choices[0].text)
Insluitingen
import os
from openai import AzureOpenAI
client = AzureOpenAI(
api_key = os.getenv("AZURE_OPENAI_API_KEY"),
api_version = "2024-02-01",
azure_endpoint =os.getenv("AZURE_OPENAI_ENDPOINT")
)
response = client.embeddings.create(
input = "Your text string goes here",
model= "text-embedding-ada-002" # model = "deployment_name".
)
print(response.model_dump_json(indent=2))
Aanvullende voorbeelden, waaronder het afhandelen van semantische tekstzoekopdrachten zonder embeddings_utils.py
deze te vinden zijn in onze zelfstudie over insluitingen.
Async
OpenAI biedt geen ondersteuning voor het aanroepen van asynchrone methoden in de client op moduleniveau. In plaats daarvan moet u een asynchrone client instantiëren.
import os
import asyncio
from openai import AsyncAzureOpenAI
async def main():
client = AsyncAzureOpenAI(
api_key = os.getenv("AZURE_OPENAI_API_KEY"),
api_version = "2024-02-01",
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
)
response = await client.chat.completions.create(model="gpt-35-turbo", messages=[{"role": "user", "content": "Hello world"}]) # model = model deployment name
print(response.model_dump_json(indent=2))
asyncio.run(main())
Verificatie
from azure.identity import DefaultAzureCredential, get_bearer_token_provider
from openai import AzureOpenAI
token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default")
api_version = "2024-02-01"
endpoint = "https://my-resource.openai.azure.com"
client = AzureOpenAI(
api_version=api_version,
azure_endpoint=endpoint,
azure_ad_token_provider=token_provider,
)
completion = client.chat.completions.create(
model="deployment-name", # model = "deployment_name"
messages=[
{
"role": "user",
"content": "How do I output all files in a directory using Python?",
},
],
)
print(completion.model_dump_json(indent=2))
Uw gegevens gebruiken
Raadpleeg de quickstart voor het gebruik van uw gegevens voor de volledige configuratiestappen die nodig zijn om deze codevoorbeelden te laten werken.
import os
import openai
import dotenv
dotenv.load_dotenv()
endpoint = os.environ.get("AZURE_OPENAI_ENDPOINT")
api_key = os.environ.get("AZURE_OPENAI_API_KEY")
deployment = os.environ.get("AZURE_OPEN_AI_DEPLOYMENT_ID")
client = openai.AzureOpenAI(
base_url=f"{endpoint}/openai/deployments/{deployment}/extensions",
api_key=api_key,
api_version="2023-08-01-preview",
)
completion = client.chat.completions.create(
model=deployment, # model = "deployment_name"
messages=[
{
"role": "user",
"content": "How is Azure machine learning different than Azure OpenAI?",
},
],
extra_body={
"dataSources": [
{
"type": "AzureCognitiveSearch",
"parameters": {
"endpoint": os.environ["AZURE_AI_SEARCH_ENDPOINT"],
"key": os.environ["AZURE_AI_SEARCH_API_KEY"],
"indexName": os.environ["AZURE_AI_SEARCH_INDEX"]
}
}
]
}
)
print(completion.model_dump_json(indent=2))
Oplossing voor DALL-E
import time
import json
import httpx
import openai
class CustomHTTPTransport(httpx.HTTPTransport):
def handle_request(
self,
request: httpx.Request,
) -> httpx.Response:
if "images/generations" in request.url.path and request.url.params[
"api-version"
] in [
"2023-06-01-preview",
"2023-07-01-preview",
"2023-08-01-preview",
"2023-09-01-preview",
"2023-10-01-preview",
]:
request.url = request.url.copy_with(path="/openai/images/generations:submit")
response = super().handle_request(request)
operation_location_url = response.headers["operation-location"]
request.url = httpx.URL(operation_location_url)
request.method = "GET"
response = super().handle_request(request)
response.read()
timeout_secs: int = 120
start_time = time.time()
while response.json()["status"] not in ["succeeded", "failed"]:
if time.time() - start_time > timeout_secs:
timeout = {"error": {"code": "Timeout", "message": "Operation polling timed out."}}
return httpx.Response(
status_code=400,
headers=response.headers,
content=json.dumps(timeout).encode("utf-8"),
request=request,
)
time.sleep(int(response.headers.get("retry-after")) or 10)
response = super().handle_request(request)
response.read()
if response.json()["status"] == "failed":
error_data = response.json()
return httpx.Response(
status_code=400,
headers=response.headers,
content=json.dumps(error_data).encode("utf-8"),
request=request,
)
result = response.json()["result"]
return httpx.Response(
status_code=200,
headers=response.headers,
content=json.dumps(result).encode("utf-8"),
request=request,
)
return super().handle_request(request)
client = openai.AzureOpenAI(
azure_endpoint="<azure_endpoint>",
api_key="<api_key>",
api_version="<api_version>",
http_client=httpx.Client(
transport=CustomHTTPTransport(),
),
)
image = client.images.generate(prompt="a cute baby seal")
print(image.data[0].url)
Naamwijzigingen
Notitie
Alle a* methoden zijn verwijderd; de asynchrone client moet worden gebruikt.
OpenAI Python 0.28.1 | OpenAI Python 1.x |
---|---|
openai.api_base |
openai.base_url |
openai.proxy |
openai.proxies |
openai.InvalidRequestError |
openai.BadRequestError |
openai.Audio.transcribe() |
client.audio.transcriptions.create() |
openai.Audio.translate() |
client.audio.translations.create() |
openai.ChatCompletion.create() |
client.chat.completions.create() |
openai.Completion.create() |
client.completions.create() |
openai.Edit.create() |
client.edits.create() |
openai.Embedding.create() |
client.embeddings.create() |
openai.File.create() |
client.files.create() |
openai.File.list() |
client.files.list() |
openai.File.retrieve() |
client.files.retrieve() |
openai.File.download() |
client.files.retrieve_content() |
openai.FineTune.cancel() |
client.fine_tunes.cancel() |
openai.FineTune.list() |
client.fine_tunes.list() |
openai.FineTune.list_events() |
client.fine_tunes.list_events() |
openai.FineTune.stream_events() |
client.fine_tunes.list_events(stream=True) |
openai.FineTune.retrieve() |
client.fine_tunes.retrieve() |
openai.FineTune.delete() |
client.fine_tunes.delete() |
openai.FineTune.create() |
client.fine_tunes.create() |
openai.FineTuningJob.create() |
client.fine_tuning.jobs.create() |
openai.FineTuningJob.cancel() |
client.fine_tuning.jobs.cancel() |
openai.FineTuningJob.delete() |
client.fine_tuning.jobs.create() |
openai.FineTuningJob.retrieve() |
client.fine_tuning.jobs.retrieve() |
openai.FineTuningJob.list() |
client.fine_tuning.jobs.list() |
openai.FineTuningJob.list_events() |
client.fine_tuning.jobs.list_events() |
openai.Image.create() |
client.images.generate() |
openai.Image.create_variation() |
client.images.create_variation() |
openai.Image.create_edit() |
client.images.edit() |
openai.Model.list() |
client.models.list() |
openai.Model.delete() |
client.models.delete() |
openai.Model.retrieve() |
client.models.retrieve() |
openai.Moderation.create() |
client.moderations.create() |
openai.api_resources |
openai.resources |
Verwijderd
openai.api_key_path
openai.app_info
openai.debug
openai.log
openai.OpenAIError
openai.Audio.transcribe_raw()
openai.Audio.translate_raw()
openai.ErrorObject
openai.Customer
openai.api_version
openai.verify_ssl_certs
openai.api_type
openai.enable_telemetry
openai.ca_bundle_path
openai.requestssession
(OpenAI gebruikthttpx
nu )openai.aiosession
(OpenAI gebruikthttpx
nu )openai.Deployment
(Eerder gebruikt voor Azure OpenAI)openai.Engine
openai.File.find_matching_files()