Rediger

Del via


Collect Apache Spark applications metrics using APIs

Overview

In this tutorial, you will learn how to integrate your existing on-premises Prometheus server with Azure Synapse workspace for near real-time Apache Spark application metrics using the Synapse Prometheus connector.

This tutorial also introduces the Azure Synapse REST metrics APIs. You can fetch Apache Spark application metrics data through the REST APIs to build your own monitoring and diagnosis toolkit or integrate with your monitoring systems.

Use Azure Synapse Prometheus connector for your on-premises Prometheus servers

Azure Synapse Prometheus connector is an open-source project. The Synapse Prometheus connector uses a file-based service discovery method to allow you to:

  • Authenticate to Synapse workspace via a Microsoft Entra service principal.
  • Fetch workspace Apache Spark applications list.
  • Pull Apache Spark application metrics through Prometheus file-based configuration.

1. Prerequisite

You need to have a Prometheus server deployed on a Linux VM.

2. Create a service principal

To use the Azure Synapse Prometheus connector in your on-premises Prometheus server, you should follow the steps below to create a service principal.

2.1 Create a service principal:

az ad sp create-for-rbac --name <service_principal_name> --role Contributor --scopes /subscriptions/<subscription_id>

The result should look like:

{
  "appId": "abcdef...",
  "displayName": "<service_principal_name>",
  "name": "http://<service_principal_name>",
  "password": "abc....",
  "tenant": "<tenant_id>"
}

Note down the appId, password, and tenant ID.

2.2 Add corresponding permissions to the service principal created in the above step.

screenshot grant permission srbac

  1. Log in to your Azure Synapse Analytics workspace as Synapse Administrator

  2. In Synapse Studio, on the left-side pane, select Manage > Access control

  3. Click the Add button on the upper left to add a role assignment

  4. For Scope, choose Workspace

  5. For Role, choose Synapse Compute Operator

  6. For Select user, input your <service_principal_name> and click your service principal

  7. Click Apply (Wait 3 minutes for permission to take effect.)

3. Download the Azure Synapse Prometheus Connector

Use the commands to install the Azure Synapse Prometheus Connector.

git clone https://github.com/microsoft/azure-synapse-spark-metrics.git
cd ./azure-synapse-spark-metrics/synapse-prometheus-connector/src
python pip install -r requirements.txt

4. Create a config file for Azure Synapse workspaces

Create a config.yaml file in config folder, and fill in the following fields: workspace_name, tenant_id, service_principal_name and service_principal_password. You can add multiple workspaces in the yaml config.

workspaces:
  - workspace_name: <your_workspace_name>
    tenant_id: <tenant_id>
    service_principal_name: <service_principal_app_id>
    service_principal_password: "<service_principal_password>"

5. Update the Prometheus config

Add following config section in your Prometheus scrape_config, and replace the <your_workspace_name> to your workspace name and the <path_to_synapse_connector> to your cloned synapse-prometheus-connector folder

- job_name: synapse-prometheus-connector
  static_configs:
  - labels:
      __metrics_path__: /metrics
      __scheme__: http
    targets:
    - localhost:8000
- job_name: synapse-workspace-<your_workspace_name>
  bearer_token_file: <path_to_synapse_connector>/output/workspace/<your_workspace_name>/bearer_token
  file_sd_configs:
  - files:
    - <path_to_synapse_connector>/output/workspace/<your_workspace_name>/application_discovery.json
    refresh_interval: 10s
  metric_relabel_configs:
  - source_labels: [ __name__ ]
    target_label: __name__
    regex: metrics_application_[0-9]+_[0-9]+_(.+)
    replacement: spark_$1
  - source_labels: [ __name__ ]
    target_label: __name__
    regex: metrics_(.+)
    replacement: spark_$1

6. Start the connector in the Prometheus server VM

Start a connector server in the Prometheus server VM as follows.

python main.py

Wait for a few seconds and the connector should start working. And you can see the "synapse-prometheus-connector" in the Prometheus service discovery page.

Use Azure Synapse Prometheus or REST metrics APIs to collect metrics data

1. Authentication

You can use the client credentials flow to get an access token. To access the metrics API, you should get a Microsoft Entra access token for the service principal, which has proper permission to access the APIs.

Parameter Required Description
tenant_id True Your Azure service principal (application) tenant ID
grant_type True Specifies the requested grant type. In a Client Credentials Grant flow, the value must be client_credentials.
client_id True The application (service principal) ID of the application you registered in Azure portal or Azure CLI.
client_secret True The secret generated for the application (service principal)
resource True Synapse resource uri, should be 'https://dev.azuresynapse.net'
curl -X GET -H 'Content-Type: application/x-www-form-urlencoded' \
  -d 'grant_type=client_credentials&client_id=<service_principal_app_id>&resource=<azure_synapse_resource_id>&client_secret=<service_principal_secret>' \
  https://login.microsoftonline.com/<tenant_id>/oauth2/token

Response looks like:

{
  "token_type": "Bearer",
  "expires_in": "599",
  "ext_expires_in": "599",
  "expires_on": "1575500666",
  "not_before": "1575499766",
  "resource": "2ff8...f879c1d",
  "access_token": "ABC0eXAiOiJKV1Q......un_f1mSgCHlA"
}

2. List running applications in the Azure Synapse workspace

To get list of Apache Spark applications for a Synapse workspace, you can follow this document Monitoring - Get Apache Spark Job List.

3. Collect Apache Spark application metrics with the Prometheus or REST APIs

Collect Apache Spark application metrics with the Prometheus API

Get latest metrics of the specified Apache Spark application by Prometheus API

GET https://{endpoint}/livyApi/versions/{livyApiVersion}/sparkpools/{sparkPoolName}/sessions/{sessionId}/applications/{sparkApplicationId}/metrics/executors/prometheus?format=html
Parameter Required Description
endpoint True The workspace development endpoint, for example https://myworkspace.dev.azuresynapse.net.
livyApiVersion True Valid api-version for the request. Currently, it is 2019-11-01-preview
sparkPoolName True Name of the spark pool.
sessionId True Identifier for the session.
sparkApplicationId True Spark Application ID

Sample Request:

GET https://myworkspace.dev.azuresynapse.net/livyApi/versions/2019-11-01-preview/sparkpools/mysparkpool/sessions/1/applications/application_1605509647837_0001/metrics/executors/prometheus?format=html

Sample Response:

Status code: 200 Response looks like:

metrics_executor_rddBlocks{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 0
metrics_executor_memoryUsed_bytes{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 74992
metrics_executor_diskUsed_bytes{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 0
metrics_executor_totalCores{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 0
metrics_executor_maxTasks{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 0
metrics_executor_activeTasks{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 1
metrics_executor_failedTasks_total{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 0
metrics_executor_completedTasks_total{application_id="application_1605509647837_0001", application_name="mynotebook_mysparkpool_1605509570802", executor_id="driver"} 2
...

Collect Apache Spark application metrics with the REST API

GET https://{endpoint}/livyApi/versions/{livyApiVersion}/sparkpools/{sparkPoolName}/sessions/{sessionId}/applications/{sparkApplicationId}/executors
Parameter Required Description
endpoint True The workspace development endpoint, for example https://myworkspace.dev.azuresynapse.net.
livyApiVersion True Valid api-version for the request. Currently, it is 2019-11-01-preview
sparkPoolName True Name of the spark pool.
sessionId True Identifier for the session.
sparkApplicationId True Spark Application ID

Sample Request

GET https://myworkspace.dev.azuresynapse.net/livyApi/versions/2019-11-01-preview/sparkpools/mysparkpool/sessions/1/applications/application_1605509647837_0001/executors

Sample Response Status code: 200

[
    {
        "id": "driver",
        "hostPort": "f98b8fc2aea84e9095bf2616208eb672007bde57624:45889",
        "isActive": true,
        "rddBlocks": 0,
        "memoryUsed": 75014,
        "diskUsed": 0,
        "totalCores": 0,
        "maxTasks": 0,
        "activeTasks": 0,
        "failedTasks": 0,
        "completedTasks": 0,
        "totalTasks": 0,
        "totalDuration": 0,
        "totalGCTime": 0,
        "totalInputBytes": 0,
        "totalShuffleRead": 0,
        "totalShuffleWrite": 0,
        "isBlacklisted": false,
        "maxMemory": 15845975654,
        "addTime": "2020-11-16T06:55:06.718GMT",
        "executorLogs": {
            "stdout": "http://f98b8fc2aea84e9095bf2616208eb672007bde57624:8042/node/containerlogs/container_1605509647837_0001_01_000001/trusted-service-user/stdout?start=-4096",
            "stderr": "http://f98b8fc2aea84e9095bf2616208eb672007bde57624:8042/node/containerlogs/container_1605509647837_0001_01_000001/trusted-service-user/stderr?start=-4096"
        },
        "memoryMetrics": {
            "usedOnHeapStorageMemory": 75014,
            "usedOffHeapStorageMemory": 0,
            "totalOnHeapStorageMemory": 15845975654,
            "totalOffHeapStorageMemory": 0
        },
        "blacklistedInStages": []
    },
    // ...
]

4. Build your own diagnosis and monitoring tools

The Prometheus API and the REST APIs provide rich metrics data about the Apache Spark application running information.You can collect the application-related metrics data through the Prometheus API and the REST APIs. And build your own diagnosis and monitoring tools that are more suitable for your needs.