카운터 데이터 검색
성능 개체는 하나 이상의 카운터를 정의할 수 있습니다. 카운터의 카운터 데이터는 PERF_COUNTER_BLOCK 메모리 블록에 있습니다. 개체 블록 내의 카운터 블록 위치는 개체에 단일 instance 카운터 또는 여러 instance 카운터가 포함되어 있는지 여부에 따라 달라집니다. 자세한 내용은 성능 데이터 형식을 참조하세요.
PERF_COUNTER_DEFINITION CounterOffset 및 CounterSize 멤버를 사용하여 카운터 블록 내에서 카운터의 데이터에 액세스합니다. 현재 카운터 데이터는 DWORD 및 ULONGLONG 데이터 형식으로 제한됩니다(성능 도구에서 지원하는 유일한 형식임).
PERF_COUNTER_DEFINITIONCounterType 멤버는 카운터 데이터를 사용하기 위해 성능 개체에서 필요한 다른 정보를 알려줍니다. 일부 카운터의 경우 카운터 데이터를 직접 사용할 수 있지만 다른 카운터의 경우 표시 가능한 값을 계산하기 위해 시간 기준 정보 또는 다른 카운터의 데이터가 필요할 수 있습니다.
다음 예제에서는 카운터 형식을 사용하여 표시 가능한 카운터 값을 계산하기 위해 카운터의 성능 데이터에서 검색해야 하는 정보를 확인하는 방법을 보여 줍니다. 카운터 형식에 따라 표시 가능한 값을 계산하는 예제는 카운터 값 계산을 참조하세요.
#include <windows.h>
#include <stdio.h>
#include <strsafe.h>
#pragma comment(lib, "advapi32.lib")
// Contains the elements required to calculate a counter value.
typedef struct _rawdata
{
DWORD CounterType;
ULONGLONG Data; // Raw counter data
LONGLONG Time; // Is a time value or a base value
DWORD MultiCounterData; // Second raw counter value for multi-valued counters
LONGLONG Frequency;
}RAW_DATA, *PRAW_DATA;
#define INIT_OBJECT_BUFFER_SIZE 48928 // Initial buffer size to use when querying specific objects.
#define INIT_GLOBAL_BUFFER_SIZE 122880 // Initial buffer size to use when using "Global" to query all objects.
#define BUFFER_INCREMENT 16384 // Increment buffer size in 16K chunks.
#define MAX_INSTANCE_NAME_LEN 255 // Max length of an instance name.
#define MAX_FULL_INSTANCE_NAME_LEN 511 // Form is parentinstancename/instancename#nnn.
LPBYTE GetPerformanceData(LPWSTR pwszSource, DWORD dwInitialBufferSize);
BOOL GetCounterValues(DWORD dwObjectIndex, DWORD dwCounterIndex, LPWSTR pInstanceName, RAW_DATA* pRawData);
BOOL GetValue(PERF_OBJECT_TYPE* pObject, PERF_COUNTER_DEFINITION* pCounter, PERF_COUNTER_BLOCK* pCounterDataBlock, PRAW_DATA pRawData);
PERF_COUNTER_BLOCK* GetCounterBlock(PERF_OBJECT_TYPE* pObject, LPWSTR pInstanceName);
PERF_COUNTER_DEFINITION* GetCounter(PERF_OBJECT_TYPE* pObject, DWORD dwCounterToFind);
PERF_OBJECT_TYPE* GetObject(DWORD dwObjectToFind);
PERF_INSTANCE_DEFINITION* GetObjectInstance(PERF_OBJECT_TYPE* pObject, LPWSTR pInstanceName);
DWORD GetSerialNo(LPWSTR pInstanceName);
BOOL GetFullInstanceName(PERF_INSTANCE_DEFINITION* pInstance, DWORD CodePage, WCHAR* pName);
BOOL ConvertNameToUnicode(UINT CodePage, LPCSTR pNameToConvert, DWORD dwNameToConvertLen, LPWSTR pConvertedName);
PERF_INSTANCE_DEFINITION* GetParentInstance(PERF_OBJECT_TYPE* pObject, DWORD dwInstancePosition);
BOOL DisplayCalculatedValue(RAW_DATA* pSample1, RAW_DATA* pSample2);
//Global variables
LPBYTE g_pPerfDataHead = NULL; // Head of the performance data.
void wmain(void)
{
RAW_DATA Sample1;
RAW_DATA Sample2;
BOOL fSuccess = FALSE;
// Retrieve counter data for the Processor object.
g_pPerfDataHead = (LPBYTE)GetPerformanceData(L"238", INIT_OBJECT_BUFFER_SIZE);
if (NULL == g_pPerfDataHead)
{
wprintf(L"GetPerformanceData failed.\n");
goto cleanup;
}
// Then, sample the "% Processor Time" counter for instance "0" of the Processor object.
fSuccess = GetCounterValues(238, 6, L"0", &Sample1);
if (FALSE == fSuccess)
{
wprintf(L"GetCounterValues failed.\n");
goto cleanup;
}
// Display five data points for the counter.
for (DWORD i = 0; i < 5; i++)
{
Sleep(1000); // Wait one second before taking the next sample
// Retrieve the object data again and get the next sample.
g_pPerfDataHead = (LPBYTE)GetPerformanceData(L"238", INIT_OBJECT_BUFFER_SIZE);
if (NULL == g_pPerfDataHead)
{
wprintf(L"GetPerformanceData in loop failed.\n");
goto cleanup;
}
fSuccess = GetCounterValues(238, 6, L"0", &Sample2);
if (FALSE == fSuccess)
{
wprintf(L"GetCounterValues failed.\n");
goto cleanup;
}
// Calculate the value based on the two samples. For counter
// types that do not use two samples, set the second parameter
// to NULL.
fSuccess = DisplayCalculatedValue(&Sample1, &Sample2);
if (FALSE == fSuccess)
{
wprintf(L"DisplayCalculatedValue failed.\n");
goto cleanup;
}
// Sample2 becomes Sample1 for the next iteration.
memcpy(&Sample1, &Sample2, sizeof(RAW_DATA));
}
cleanup:
if (g_pPerfDataHead)
free(g_pPerfDataHead);
}
// Retrieve a buffer that contains the specified performance data.
// The pwszSource parameter determines the data that GetRegistryBuffer returns.
//
// Typically, when calling RegQueryValueEx, you can specify zero for the size of the buffer
// and the RegQueryValueEx will set your size variable to the required buffer size. However,
// if the source is "Global" or one or more object index values, you will need to increment
// the buffer size in a loop until RegQueryValueEx does not return ERROR_MORE_DATA.
LPBYTE GetPerformanceData(LPWSTR pwszSource, DWORD dwInitialBufferSize)
{
LPBYTE pBuffer = NULL;
DWORD dwBufferSize = 0; //Size of buffer, used to increment buffer size
DWORD dwSize = 0; //Size of buffer, used when calling RegQueryValueEx
LPBYTE pTemp = NULL; //Temp variable for realloc() in case it fails
LONG status = ERROR_SUCCESS;
dwBufferSize = dwSize = dwInitialBufferSize;
pBuffer = (LPBYTE)malloc(dwBufferSize);
if (pBuffer)
{
while (ERROR_MORE_DATA == (status = RegQueryValueEx(HKEY_PERFORMANCE_DATA, pwszSource, NULL, NULL, pBuffer, &dwSize)))
{
//Contents of dwSize is unpredictable if RegQueryValueEx fails, which is why
//you need to increment dwBufferSize and use it to set dwSize.
dwBufferSize += BUFFER_INCREMENT;
pTemp = (LPBYTE)realloc(pBuffer, dwBufferSize);
if (pTemp)
{
pBuffer = pTemp;
dwSize = dwBufferSize;
}
else
{
wprintf(L"Reallocation error.\n");
free(pBuffer);
pBuffer = NULL;
goto cleanup;
}
}
if (ERROR_SUCCESS != status)
{
wprintf(L"RegQueryValueEx failed with 0x%x.\n", status);
free(pBuffer);
pBuffer = NULL;
}
}
else
{
wprintf(L"malloc failed to allocate initial memory request.\n");
}
cleanup:
RegCloseKey(HKEY_PERFORMANCE_DATA);
return pBuffer;
}
// Use the object index to find the object in the performance data. Then, use the
// counter index to find the counter definition. The definition contains the offset
// to the counter data in the counter block. The location of the counter block
// depends on whether the counter is a single instance counter or multiple instance counter.
// After finding the counter block, retrieve the counter data.
BOOL GetCounterValues(DWORD dwObjectIndex, DWORD dwCounterIndex, LPWSTR pInstanceName, RAW_DATA* pRawData)
{
PERF_OBJECT_TYPE* pObject = NULL;
PERF_COUNTER_DEFINITION* pCounter = NULL;
PERF_COUNTER_BLOCK* pCounterDataBlock = NULL;
BOOL fSuccess = FALSE;
pObject = GetObject(dwObjectIndex);
if (NULL == pObject)
{
wprintf(L"Object %d not found.\n", dwObjectIndex);
goto cleanup;
}
pCounter = GetCounter(pObject, dwCounterIndex);
if (NULL == pCounter)
{
wprintf(L"Counter %d not found.\n", dwCounterIndex);
goto cleanup;
}
// Retrieve a pointer to the beginning of the counter data block. The counter data
// block contains all the counter data for the object.
pCounterDataBlock = GetCounterBlock(pObject, pInstanceName);
if (NULL == pCounterDataBlock)
{
wprintf(L"Instance %s not found.\n", pInstanceName);
goto cleanup;
}
ZeroMemory(pRawData, sizeof(RAW_DATA));
pRawData->CounterType = pCounter->CounterType;
fSuccess = GetValue(pObject, pCounter, pCounterDataBlock, pRawData);
cleanup:
return fSuccess;
}
// Use the object index to find the object in the performance data.
PERF_OBJECT_TYPE* GetObject(DWORD dwObjectToFind)
{
LPBYTE pObject = g_pPerfDataHead + ((PERF_DATA_BLOCK*)g_pPerfDataHead)->HeaderLength;
DWORD dwNumberOfObjects = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->NumObjectTypes;
BOOL fFoundObject = FALSE;
for (DWORD i = 0; i < dwNumberOfObjects; i++)
{
if (dwObjectToFind == ((PERF_OBJECT_TYPE*)pObject)->ObjectNameTitleIndex)
{
fFoundObject = TRUE;
break;
}
pObject += ((PERF_OBJECT_TYPE*)pObject)->TotalByteLength;
}
return (fFoundObject) ? (PERF_OBJECT_TYPE*)pObject : NULL;
}
// Use the counter index to find the object in the performance data.
PERF_COUNTER_DEFINITION* GetCounter(PERF_OBJECT_TYPE* pObject, DWORD dwCounterToFind)
{
PERF_COUNTER_DEFINITION* pCounter = (PERF_COUNTER_DEFINITION*)((LPBYTE)pObject + pObject->HeaderLength);
DWORD dwNumberOfCounters = pObject->NumCounters;
BOOL fFoundCounter = FALSE;
for (DWORD i = 0; i < dwNumberOfCounters; i++)
{
if (pCounter->CounterNameTitleIndex == dwCounterToFind)
{
fFoundCounter = TRUE;
break;
}
pCounter++;
}
return (fFoundCounter) ? pCounter : NULL;
}
// Returns a pointer to the beginning of the PERF_COUNTER_BLOCK. The location of the
// of the counter data block depends on whether the object contains single instance
// counters or multiple instance counters (see PERF_OBJECT_TYPE.NumInstances).
PERF_COUNTER_BLOCK* GetCounterBlock(PERF_OBJECT_TYPE* pObject, LPWSTR pInstanceName)
{
PERF_COUNTER_BLOCK* pBlock = NULL;
PERF_INSTANCE_DEFINITION* pInstance = NULL;
// If there are no instances, the block follows the object and counter structures.
if (0 == pObject->NumInstances || PERF_NO_INSTANCES == pObject->NumInstances)
{
pBlock = (PERF_COUNTER_BLOCK*)((LPBYTE)pObject + pObject->DefinitionLength);
}
else if (pObject->NumInstances > 0 && pInstanceName) // Find the instance. The block follows the instance
{ // structure and instance name.
pInstance = GetObjectInstance(pObject, pInstanceName);
if (pInstance)
{
pBlock = (PERF_COUNTER_BLOCK*)((LPBYTE)pInstance + pInstance->ByteLength);
}
}
return pBlock;
}
// If the instance names are unique (there will never be more than one instance
// with the same name), then finding the same instance is not an issue. However,
// if the instance names are not unique, there is no guarantee that the instance
// whose counter value you are retrieving is the same instance from which you previously
// retrieved data. This function expects the instance name to be well formed. For
// example, a process object could have four instances with each having svchost as its name.
// Since service hosts come and go, there is no way to determine if you are dealing with
// the same instance.
// Starting in Windows 11, use the "Process V2" counterset to avoid this issue.
//
// The convention for specifying an instance is parentinstancename/instancename#nnn.
// If only instancename is specified, the first instance found that matches the name is used.
// Specify parentinstancename if the instance is the child of a parent instance.
PERF_INSTANCE_DEFINITION* GetObjectInstance(PERF_OBJECT_TYPE* pObject, LPWSTR pInstanceName)
{
PERF_INSTANCE_DEFINITION* pInstance = (PERF_INSTANCE_DEFINITION*)((LPBYTE)pObject + pObject->DefinitionLength);
BOOL fSuccess = FALSE;
WCHAR szName[MAX_FULL_INSTANCE_NAME_LEN + 1];
PERF_COUNTER_BLOCK* pCounterBlock = NULL;
DWORD dwSerialNo = GetSerialNo(pInstanceName);
DWORD dwOccurrencesFound = 0;
DWORD dwNameLen = 0;
DWORD dwInputNameLen = (DWORD)wcslen(pInstanceName);
for (LONG i = 0; i < pObject->NumInstances; i++)
{
GetFullInstanceName(pInstance, pObject->CodePage, szName);
if ((dwNameLen = (DWORD)wcslen(szName)) <= dwInputNameLen)
{
if (0 == _wcsnicmp(szName, pInstanceName, dwNameLen)) // The name matches
{
dwOccurrencesFound++;
// If the input name does not specify an nth instance or
// the nth instance has been found, return the instance.
// It is 'dwSerialNo+1' because cmd#3 is the fourth occurrence.
if (0 == dwSerialNo || dwOccurrencesFound == (dwSerialNo+1))
{
return pInstance;
}
}
}
pCounterBlock = (PERF_COUNTER_BLOCK*)((LPBYTE)pInstance + pInstance->ByteLength);
pInstance = (PERF_INSTANCE_DEFINITION*)((LPBYTE)pInstance + pInstance->ByteLength + pCounterBlock->ByteLength);
}
return NULL;
}
// Parses the instance name for the serial number. The convention is to use
// a serial number appended to the instance name to identify a specific
// instance when the instance names are not unique. For example, to specify
// the fourth instance of svchost, use svchost#3 (the first occurrence does
// not include a serial number).
DWORD GetSerialNo(LPWSTR pInstanceName)
{
LPWSTR pSerialNo = NULL;
DWORD dwLength = 0;
DWORD value = 0;
pSerialNo = wcschr(pInstanceName, '#');
if (pSerialNo)
{
pSerialNo++;
value = _wtoi(pSerialNo);
}
return value;
}
// Retrieve the full name of the instance. The full name of the instance includes
// the name of this instance and its parent instance, if this instance is a
// child instance. The full name is in the form, "parent name/child name".
// For example, a thread instance is a child of a process instance.
//
// Providers are encouraged to use Unicode strings for instance names. If
// PERF_INSTANCE_DEFINITION.CodePage is zero, the name is in Unicode; otherwise,
// use the CodePage value to convert the string to Unicode.
BOOL GetFullInstanceName(PERF_INSTANCE_DEFINITION* pInstance, DWORD CodePage, WCHAR* pName)
{
BOOL fSuccess = TRUE;
PERF_INSTANCE_DEFINITION *pParentInstance = NULL;
PERF_OBJECT_TYPE *pParentObject = NULL;
DWORD dwLength = 0;
WCHAR wszInstanceName[MAX_INSTANCE_NAME_LEN+1];
WCHAR wszParentInstanceName[MAX_INSTANCE_NAME_LEN+1];
if (CodePage == 0) // Instance name is a Unicode string
{
// PERF_INSTANCE_DEFINITION->NameLength is in bytes, so convert to characters.
dwLength = (MAX_INSTANCE_NAME_LEN < (pInstance->NameLength/2)) ? MAX_INSTANCE_NAME_LEN : pInstance->NameLength/2;
StringCchCopyN(wszInstanceName, MAX_INSTANCE_NAME_LEN+1, (LPWSTR)(((LPBYTE)pInstance)+pInstance->NameOffset), dwLength);
wszInstanceName[dwLength] = '\0';
}
else // Convert the multi-byte instance name to Unicode
{
fSuccess = ConvertNameToUnicode(CodePage,
(LPCSTR)(((LPBYTE)pInstance)+pInstance->NameOffset), // Points to string
pInstance->NameLength,
wszInstanceName);
if (FALSE == fSuccess)
{
wprintf(L"ConvertNameToUnicode for instance failed.\n");
goto cleanup;
}
}
if (pInstance->ParentObjectTitleIndex)
{
// Use the index to find the parent object. The pInstance->ParentObjectInstance
// member tells you that the parent instance is the nth instance of the
// parent object.
pParentObject = GetObject(pInstance->ParentObjectTitleIndex);
pParentInstance = GetParentInstance(pParentObject, pInstance->ParentObjectInstance);
if (CodePage == 0) // Instance name is a Unicode string
{
dwLength = (MAX_INSTANCE_NAME_LEN < pParentInstance->NameLength/2) ? MAX_INSTANCE_NAME_LEN : pParentInstance->NameLength/2;
StringCchCopyN(wszParentInstanceName, MAX_INSTANCE_NAME_LEN+1, (LPWSTR)(((LPBYTE)pParentInstance)+pParentInstance->NameOffset), dwLength);
wszParentInstanceName[dwLength] = '\0';
}
else // Convert the multi-byte instance name to Unicode
{
fSuccess = ConvertNameToUnicode(CodePage,
(LPCSTR)(((LPBYTE)pParentInstance)+pParentInstance->NameOffset), //Points to string.
pInstance->NameLength,
wszParentInstanceName);
if (FALSE == fSuccess)
{
wprintf(L"ConvertNameToUnicode for parent instance failed.\n");
goto cleanup;
}
}
StringCchPrintf(pName, MAX_FULL_INSTANCE_NAME_LEN+1, L"%s/%s", wszParentInstanceName, wszInstanceName);
}
else
{
StringCchPrintf(pName, MAX_INSTANCE_NAME_LEN+1, L"%s", wszInstanceName);
}
cleanup:
return fSuccess;
}
// Converts a multi-byte string to a Unicode string. If the input string is longer than
// MAX_INSTANCE_NAME_LEN, the input string is truncated.
BOOL ConvertNameToUnicode(UINT CodePage, LPCSTR pNameToConvert, DWORD dwNameToConvertLen, LPWSTR pConvertedName)
{
BOOL fSuccess = FALSE;
int CharsConverted = 0;
DWORD dwLength = 0;
// dwNameToConvertLen is in bytes, so convert MAX_INSTANCE_NAME_LEN to bytes.
dwLength = (MAX_INSTANCE_NAME_LEN*sizeof(WCHAR) < (dwNameToConvertLen)) ? MAX_INSTANCE_NAME_LEN*sizeof(WCHAR) : dwNameToConvertLen;
CharsConverted = MultiByteToWideChar((UINT)CodePage, 0, pNameToConvert, dwLength, pConvertedName, MAX_INSTANCE_NAME_LEN);
if (CharsConverted)
{
pConvertedName[dwLength] = '\0';
fSuccess = TRUE;
}
return fSuccess;
}
// Find the nth instance of an object.
PERF_INSTANCE_DEFINITION* GetParentInstance(PERF_OBJECT_TYPE* pObject, DWORD dwInstancePosition)
{
LPBYTE pInstance = (LPBYTE)pObject + pObject->DefinitionLength;
PERF_COUNTER_BLOCK* pCounter = NULL;
for (DWORD i = 0; i < dwInstancePosition; i++)
{
pCounter = (PERF_COUNTER_BLOCK*)(pInstance + ((PERF_INSTANCE_DEFINITION*)pInstance)->ByteLength);
pInstance += ((PERF_INSTANCE_DEFINITION*)pInstance)->ByteLength + pCounter->ByteLength;
}
return (PERF_INSTANCE_DEFINITION*)pInstance;
}
// Retrieve the raw counter value and any supporting data needed to calculate
// a displayable counter value. Use the counter type to determine the information
// needed to calculate the value.
BOOL GetValue(PERF_OBJECT_TYPE* pObject,
PERF_COUNTER_DEFINITION* pCounter,
PERF_COUNTER_BLOCK* pCounterDataBlock,
PRAW_DATA pRawData)
{
PVOID pData = NULL;
UNALIGNED ULONGLONG* pullData = NULL;
PERF_COUNTER_DEFINITION* pBaseCounter = NULL;
BOOL fSuccess = TRUE;
//Point to the raw counter data.
pData = (PVOID)((LPBYTE)pCounterDataBlock + pCounter->CounterOffset);
//Now use the PERF_COUNTER_DEFINITION.CounterType value to figure out what
//other information you need to calculate a displayable value.
switch (pCounter->CounterType) {
case PERF_COUNTER_COUNTER:
case PERF_COUNTER_QUEUELEN_TYPE:
case PERF_SAMPLE_COUNTER:
pRawData->Data = (ULONGLONG)(*(DWORD*)pData);
pRawData->Time = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfTime.QuadPart;
if (PERF_COUNTER_COUNTER == pCounter->CounterType || PERF_SAMPLE_COUNTER == pCounter->CounterType)
{
pRawData->Frequency = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfFreq.QuadPart;
}
break;
case PERF_OBJ_TIME_TIMER:
pRawData->Data = (ULONGLONG)(*(DWORD*)pData);
pRawData->Time = pObject->PerfTime.QuadPart;
break;
case PERF_COUNTER_100NS_QUEUELEN_TYPE:
pRawData->Data = *(UNALIGNED ULONGLONG *)pData;
pRawData->Time = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfTime100nSec.QuadPart;
break;
case PERF_COUNTER_OBJ_TIME_QUEUELEN_TYPE:
pRawData->Data = *(UNALIGNED ULONGLONG *)pData;
pRawData->Time = pObject->PerfTime.QuadPart;
break;
case PERF_COUNTER_TIMER:
case PERF_COUNTER_TIMER_INV:
case PERF_COUNTER_BULK_COUNT:
case PERF_COUNTER_LARGE_QUEUELEN_TYPE:
pullData = (UNALIGNED ULONGLONG *)pData;
pRawData->Data = *pullData;
pRawData->Time = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfTime.QuadPart;
if (pCounter->CounterType == PERF_COUNTER_BULK_COUNT)
{
pRawData->Frequency = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfFreq.QuadPart;
}
break;
case PERF_COUNTER_MULTI_TIMER:
case PERF_COUNTER_MULTI_TIMER_INV:
pullData = (UNALIGNED ULONGLONG *)pData;
pRawData->Data = *pullData;
pRawData->Frequency = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfFreq.QuadPart;
pRawData->Time = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfTime.QuadPart;
//These counter types have a second counter value that is adjacent to
//this counter value in the counter data block. The value is needed for
//the calculation.
if ((pCounter->CounterType & PERF_MULTI_COUNTER) == PERF_MULTI_COUNTER)
{
++pullData;
pRawData->MultiCounterData = *(DWORD*)pullData;
}
break;
//These counters do not use any time reference.
case PERF_COUNTER_RAWCOUNT:
case PERF_COUNTER_RAWCOUNT_HEX:
case PERF_COUNTER_DELTA:
pRawData->Data = (ULONGLONG)(*(DWORD*)pData);
pRawData->Time = 0;
break;
case PERF_COUNTER_LARGE_RAWCOUNT:
case PERF_COUNTER_LARGE_RAWCOUNT_HEX:
case PERF_COUNTER_LARGE_DELTA:
pRawData->Data = *(UNALIGNED ULONGLONG*)pData;
pRawData->Time = 0;
break;
//These counters use the 100ns time base in their calculation.
case PERF_100NSEC_TIMER:
case PERF_100NSEC_TIMER_INV:
case PERF_100NSEC_MULTI_TIMER:
case PERF_100NSEC_MULTI_TIMER_INV:
pullData = (UNALIGNED ULONGLONG*)pData;
pRawData->Data = *pullData;
pRawData->Time = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfTime100nSec.QuadPart;
//These counter types have a second counter value that is adjacent to
//this counter value in the counter data block. The value is needed for
//the calculation.
if ((pCounter->CounterType & PERF_MULTI_COUNTER) == PERF_MULTI_COUNTER)
{
++pullData;
pRawData->MultiCounterData = *(DWORD*)pullData;
}
break;
//These counters use two data points, this value and one from this counter's
//base counter. The base counter should be the next counter in the object's
//list of counters.
case PERF_SAMPLE_FRACTION:
case PERF_RAW_FRACTION:
pRawData->Data = (ULONGLONG)(*(DWORD*)pData);
pBaseCounter = pCounter+1; //Get base counter
if ((pBaseCounter->CounterType & PERF_COUNTER_BASE) == PERF_COUNTER_BASE)
{
pData = (PVOID)((LPBYTE)pCounterDataBlock + pBaseCounter->CounterOffset);
pRawData->Time = (LONGLONG)(*(DWORD*)pData);
}
else
{
fSuccess = FALSE;
}
break;
case PERF_LARGE_RAW_FRACTION:
pRawData->Data = *(UNALIGNED ULONGLONG*)pData;
pBaseCounter = pCounter+1;
if ((pBaseCounter->CounterType & PERF_COUNTER_BASE) == PERF_COUNTER_BASE)
{
pData = (PVOID)((LPBYTE)pCounterDataBlock + pBaseCounter->CounterOffset);
pRawData->Time = *(LONGLONG*)pData;
}
else
{
fSuccess = FALSE;
}
break;
case PERF_PRECISION_SYSTEM_TIMER:
case PERF_PRECISION_100NS_TIMER:
case PERF_PRECISION_OBJECT_TIMER:
pRawData->Data = *(UNALIGNED ULONGLONG*)pData;
pBaseCounter = pCounter+1;
if ((pBaseCounter->CounterType & PERF_COUNTER_BASE) == PERF_COUNTER_BASE)
{
pData = (PVOID)((LPBYTE)pCounterDataBlock + pBaseCounter->CounterOffset);
pRawData->Time = *(LONGLONG*)pData;
}
else
{
fSuccess = FALSE;
}
break;
case PERF_AVERAGE_TIMER:
case PERF_AVERAGE_BULK:
pRawData->Data = *(UNALIGNED ULONGLONG*)pData;
pBaseCounter = pCounter+1;
if ((pBaseCounter->CounterType & PERF_COUNTER_BASE) == PERF_COUNTER_BASE)
{
pData = (PVOID)((LPBYTE)pCounterDataBlock + pBaseCounter->CounterOffset);
pRawData->Time = *(DWORD*)pData;
}
else
{
fSuccess = FALSE;
}
if (pCounter->CounterType == PERF_AVERAGE_TIMER)
{
pRawData->Frequency = ((PERF_DATA_BLOCK*)g_pPerfDataHead)->PerfFreq.QuadPart;
}
break;
//These are base counters and are used in calculations for other counters.
//This case should never be entered.
case PERF_SAMPLE_BASE:
case PERF_AVERAGE_BASE:
case PERF_COUNTER_MULTI_BASE:
case PERF_RAW_BASE:
case PERF_LARGE_RAW_BASE:
pRawData->Data = 0;
pRawData->Time = 0;
fSuccess = FALSE;
break;
case PERF_ELAPSED_TIME:
pRawData->Data = *(UNALIGNED ULONGLONG*)pData;
pRawData->Time = pObject->PerfTime.QuadPart;
pRawData->Frequency = pObject->PerfFreq.QuadPart;
break;
//These counters are currently not supported.
case PERF_COUNTER_TEXT:
case PERF_COUNTER_NODATA:
case PERF_COUNTER_HISTOGRAM_TYPE:
pRawData->Data = 0;
pRawData->Time = 0;
fSuccess = FALSE;
break;
//Encountered an unidentified counter.
default:
pRawData->Data = 0;
pRawData->Time = 0;
fSuccess = FALSE;
break;
}
return fSuccess;
}