편집

다음을 통해 공유


Adding a Decoder to a Topology

This topic describes how to add an audio or video decoder to a topology.

For most playback applications, you can omit the decoders from the partial topology that you send to the Media Session. The Media Session uses the topology loader to complete the topology, and the topology loader inserts any decoders that are needed. If you want to select a particular decoder, however, you can manually add a decoder to the topology.

Here are the overall steps for adding a decoder to a topology.

  1. Find the CLSID of the decoder.
  2. Add a node for the decoder in the topology.
  3. For a video decoder, enable DirectX Video Acceleration. This step is not required for audio decoders.

Find the Decoder CLSID

If you want to use a particular decoder, you might already know the CLSID of the decoder. If so, you can skip this step. Otherwise, use the MFTEnum function to look up the CLSID in the registry. This function takes several search criteria as input. To find a decoder, you need to specify only the input format (major type and subtype). You can get these from the stream descriptor, as shown in the following code.

// Returns the MFT decoder based on the major type GUID.

HRESULT GetDecoderCategory(const GUID& majorType, GUID *pCategory)
{
    if (majorType == MFMediaType_Video)
    {
        *pCategory = MFT_CATEGORY_VIDEO_DECODER;
    }
    else if (majorType == MFMediaType_Audio)
    {
        *pCategory = MFT_CATEGORY_AUDIO_DECODER;
    }
    else
    {
        return MF_E_INVALIDMEDIATYPE;
    }
    return S_OK;
}

// Finds a decoder for a stream.
//
// If the stream is not compressed, pCLSID receives the value GUID_NULL.

HRESULT FindDecoderForStream(
    IMFStreamDescriptor *pSD,   // Stream descriptor for the stream.
    CLSID *pCLSID               // Receives the CLSID of the decoder.
    )
{
    BOOL    bIsCompressed = FALSE;
    GUID    guidMajorType = GUID_NULL;
    GUID    guidSubtype = GUID_NULL;
    GUID    guidDecoderCategory = GUID_NULL;

    CLSID *pDecoderCLSIDs = NULL;   // Pointer to an array of CLISDs. 
    UINT32 cDecoderCLSIDs = NULL;   // Size of the array.

    IMFMediaTypeHandler *pHandler = NULL;
    IMFMediaType *pMediaType = NULL;

    // Find the media type for the stream.
    HRESULT hr = pSD->GetMediaTypeHandler(&pHandler);

    if (SUCCEEDED(hr))
    {
        hr = pHandler->GetCurrentMediaType(&pMediaType);
    }

    // Get the major type and subtype.
    if (SUCCEEDED(hr))
    {
        hr = pMediaType->GetMajorType(&guidMajorType);
    }

    if (SUCCEEDED(hr))
    {
        hr = pMediaType->GetGUID(MF_MT_SUBTYPE, &guidSubtype);
    }

    // Check whether the stream is compressed.
    if (SUCCEEDED(hr))
    {
        hr = pMediaType->IsCompressedFormat(&bIsCompressed);
    }

#if (WINVER < _WIN32_WINNT_WIN7)

    // Starting in Windows 7, you can connect an uncompressed video source 
    // directly to the EVR. In earlier versions of Media Foundation, this
    // is not supported.

    if (SUCCEEDED(hr))
    {
        if (!bIsCompressed && (guidMajorType == MFMediaType_Video))
        {
            hr = MF_E_INVALIDMEDIATYPE;
        }
    }
#endif

    // If the stream is compressed, find a decoder.
    if (SUCCEEDED(hr))
    {
        if (bIsCompressed)
        {
            // Select the decoder category from the major type (audio/video).
            hr = GetDecoderCategory(guidMajorType, &guidDecoderCategory);

            // Look for a decoder.

            if (SUCCEEDED(hr))
            {
                MFT_REGISTER_TYPE_INFO tinfo;
                tinfo.guidMajorType = guidMajorType;
                tinfo.guidSubtype = guidSubtype;

                hr = MFTEnum(
                        guidDecoderCategory,
                        0,               // Reserved
                        &tinfo,          // Input type to match. (Encoded type.)
                        NULL,            // Output type to match. (Don't care.)
                        NULL,            // Attributes to match. (None.)
                        &pDecoderCLSIDs, // Receives a pointer to an array of CLSIDs.
                        &cDecoderCLSIDs  // Receives the size of the array.
                        );
            }

            // MFTEnum can return zero matches.
            if (SUCCEEDED(hr) && (cDecoderCLSIDs == 0))
            {
                hr = MF_E_TOPO_CODEC_NOT_FOUND;
            }

            // Return the first CLSID in the list to the caller.
            if (SUCCEEDED(hr))
            {
                *pCLSID = pDecoderCLSIDs[0];
            }
        }
        else
        {
            // Uncompressed. A decoder is not required.
            *pCLSID = GUID_NULL;
        }
    }

    SafeRelease(&pHandler);
    SafeRelease(&pMediaType);
    CoTaskMemFree(pDecoderCLSIDs);

    return hr;
}

For more information about stream descriptors, see Presentation Descriptors.

The MFTEnum function returns a pointer to an array of CLSIDs. The order of the returned array is arbitrary. In this example, the function uses the first CLSID in the array. You can get more information about a decoder, including the friendly name of the decoder, by calling MFTGetInfo. Also, note that MFTEnum can succeed but return an empty array, so it is important to check the array size, which is returned in the last parameter.

Add the Decoder Node to the Topology

After you have the CLSID for the decoder, create a new transform node by calling MFCreateTopology. Specify the CLSID by setting the MF_TOPONODE_TRANSFORM_OBJECTID attribute on the node. For an example of how to create a transform node, see Creating Transform Nodes. Then connect the source node to the decoder node, and the decoder node to the output node, by calling IMFTopologyNode::ConnectOutput.

The following example shows how to create the nodes and connect them. The example is very similar to the example function named AddBranchToPartialTopology that is shown in the topic Creating Playback Topologies. The only difference is that this example adds the extra node for the decoder.

HRESULT AddBranchToPartialTopologyWithDecoder(
    IMFTopology *pTopology,         // Topology.
    IMFMediaSource *pSource,        // Media source.
    IMFPresentationDescriptor *pPD, // Presentation descriptor.
    DWORD iStream,                  // Stream index.
    HWND hVideoWnd                  // Window for video playback.
    )
{
    IMFStreamDescriptor *pSD = NULL;
    IMFActivate         *pSinkActivate = NULL;
    IMFTopologyNode     *pSourceNode = NULL;
    IMFTopologyNode     *pOutputNode = NULL;
    IMFTopologyNode     *pDecoderNode = NULL;

    BOOL fSelected = FALSE;
    CLSID clsidDecoder = GUID_NULL;

    // Get the stream descriptor.
    HRESULT hr = pPD->GetStreamDescriptorByIndex(iStream, &fSelected, &pSD);
    if (FAILED(hr))
    {
        return hr;
    }

    if (fSelected)
    {
        // Add a source node for this stream.
        hr = AddSourceNode(pTopology, pSource, pPD, pSD, &pSourceNode);

        // Create the media sink activation object.
        if (SUCCEEDED(hr))
        {
            hr = CreateMediaSinkActivate(pSD, hVideoWnd, &pSinkActivate);
        }

        // Create the output node for the renderer.
        if (SUCCEEDED(hr))
        {
            hr = AddOutputNode(pTopology, pSinkActivate, 0, &pOutputNode);
        }

        // Find a decoder.
        if (SUCCEEDED(hr))
        {
            hr = FindDecoderForStream(pSD, &clsidDecoder);
        }

        if (SUCCEEDED(hr))
        {
            if (clsidDecoder == GUID_NULL)
            {
                // No decoder is required. 
                // Connect the source node to the output node.
                hr = pSourceNode->ConnectOutput(0, pOutputNode, 0);
            }
            else
            {
                // Add a decoder node.
                hr = AddTransformNode(pTopology, clsidDecoder, &pDecoderNode);

                // Connect the source node to the decoder node.
                if (SUCCEEDED(hr))
                {
                    hr = pSourceNode->ConnectOutput(0, pDecoderNode, 0);
                }

                // Connect the decoder node to the output node.
                if (SUCCEEDED(hr))
                {
                    hr = pDecoderNode->ConnectOutput(0, pOutputNode, 0);
                }
            }
        }

        // Mark this branch as not requiring a decoder.
        if (SUCCEEDED(hr))
        {
            hr = pOutputNode->SetUINT32(
                MF_TOPONODE_CONNECT_METHOD, 
                MF_CONNECT_ALLOW_CONVERTER
                );
        }

        if (SUCCEEDED(hr))
        {
            hr = pDecoderNode->SetUINT32(
                MF_TOPONODE_CONNECT_METHOD, 
                MF_CONNECT_ALLOW_CONVERTER
                );
        }

    }
    // else: If not selected, don't add the branch. 

    SafeRelease(&pSD);
    SafeRelease(&pSinkActivate);
    SafeRelease(&pSourceNode);
    SafeRelease(&pOutputNode);
    SafeRelease(&pDecoderNode);

    return hr;
}

Enable Video Acceleration

The next step in adding an audio or video decoder to a topology applies only to video decoders. To get the best performance for video playback, you should enable DirectX Video Acceleration (DXVA) if the video decoder supports it. Usually this step is performed by the topology loader, but if you add the decoder to the topology manually, then you must perform this step yourself.

As a precondition for this step, all output nodes in the topology must be bound to media sinks. For more information, see Binding Output Nodes to Media Sinks.

First, find the object in the topology that hosts the Direct3D device manager. To do so, get the object pointer from each node and query the object for the IDirect3DDeviceManager9 service. Typically the enhanced video renderer (EVR) serves this role. The following code shows a function that finds the device manager:

// Finds the node in the topology that provides the Direct3D device manager. 

HRESULT FindDeviceManager(
    IMFTopology *pTopology,         // Topology to search.
    IUnknown **ppDeviceManager,     // Receives a pointer to the device manager.
    IMFTopologyNode **ppNode        // Receives a pointer to the node.
    )
{
    HRESULT hr = S_OK;
    WORD cNodes = 0;
    BOOL bFound = FALSE;

    IMFTopologyNode *pNode = NULL;
    IUnknown *pNodeObject = NULL;
    IDirect3DDeviceManager9 *pD3DManager = NULL;

    // Search all of the nodes in the topology.
    
    hr = pTopology->GetNodeCount(&cNodes);

    if (FAILED(hr))
    {
        return hr;
    }

    for (WORD i = 0; i < cNodes; i++)
    {
        // For each of the following calls, failure just means we 
        // did not find the node we're looking for, so keep looking. 

        hr = pTopology->GetNode(i, &pNode);

        // Get the node's object pointer.
        if (SUCCEEDED(hr))
        {
            hr = pNode->GetObject(&pNodeObject);
        }

        // Query the node object for the device manager service.
        if (SUCCEEDED(hr))
        {
            hr = MFGetService(
                pNodeObject, 
                MR_VIDEO_ACCELERATION_SERVICE, 
                IID_PPV_ARGS(&pD3DManager)
                );
        }

        if (SUCCEEDED(hr))
        {
            // Found the right node. Return the pointers to the caller.
            *ppDeviceManager = pD3DManager;
            (*ppDeviceManager)->AddRef();

            *ppNode = pNode;
            (*ppNode)->AddRef();

            bFound = TRUE;
            break;
        }

        SafeRelease(&pNodeObject);
        SafeRelease(&pD3DManager);
        SafeRelease(&pNode);

    } // End of for loop.

    SafeRelease(&pNodeObject);
    SafeRelease(&pD3DManager);
    SafeRelease(&pNode);

    return bFound ? S_OK : E_FAIL;
}

Next, find the transform node that is directly upstream from the node that contains the Direct3D device manager. Get the IMFTransform pointer from this transform node. The IMFTransform pointer represents a Media Foundation transform (MFT). Depending on how the node was created, you might need to create the MFT by calling CoCreateInstance, or activate the MFT from an activation object. The following code handles all of the various cases:

// Returns the MFT for a transform node.

HRESULT GetTransformFromNode(
    IMFTopologyNode *pNode, 
    IMFTransform **ppMFT
    )
{
    MF_TOPOLOGY_TYPE type = MF_TOPOLOGY_MAX;

    IUnknown *pNodeObject = NULL;
    IMFTransform *pMFT = NULL;
    IMFActivate *pActivate = NULL;
    IMFAttributes *pAttributes = NULL;

    // Is this a transform node?
    HRESULT hr = pNode->GetNodeType(&type);

    if (FAILED(hr))
    {
        return hr;
    }

    if (type != MF_TOPOLOGY_TRANSFORM_NODE)
    {
        // Wrong node type.
        return E_FAIL;
    }

    // Check whether the node has an object pointer.
    hr = pNode->GetObject(&pNodeObject);

    if (SUCCEEDED(hr))
    {
        // The object pointer should be one of the following:
        // 1. Pointer to an MFT.
        // 2. Pointer to an activation object.

        // Is it an MFT? Query for IMFTransform.
        hr = pNodeObject->QueryInterface(IID_IMFTransform, (void**)&pMFT);
        if (FAILED(hr))
        {
            // It is not an MFT, so it should be an activation object.
            hr = pNodeObject->QueryInterface(IID_PPV_ARGS(&pActivate));

            // Use the activation object to create the MFT.

            if (SUCCEEDED(hr))
            {
                hr = pActivate->ActivateObject(IID_PPV_ARGS(&pMFT));
            }

            // Replace the node's object pointer with the MFT.
            if (SUCCEEDED(hr))
            {
                hr = pNode->SetObject(pMFT);
            }

            // If the activation object has the MF_ACTIVATE_MFT_LOCKED 
            // attribute, transfer this value to the
            // MF_TOPONODE_MFT_LOCKED attribute on the node.
            // However, don't fail if this attribute is not found.
            if (SUCCEEDED(hr))
            {
                BOOL bLocked = MFGetAttributeUINT32(
                    pActivate, MF_ACTIVATE_MFT_LOCKED, FALSE);


                hr = pNode->SetUINT32(MF_TOPONODE_LOCKED, bLocked);
            }
        }
    }
    else
    {
        GUID clsidMFT;

        // The node does not have an object pointer. Look for a CLSID.
        hr = pNode->GetGUID(MF_TOPONODE_TRANSFORM_OBJECTID, &clsidMFT);
       
        // Create the MFT.
        if (SUCCEEDED(hr))
        {
            hr = CoCreateInstance(
                clsidMFT, NULL,
                CLSCTX_INPROC_SERVER, 
                IID_PPV_ARGS(&pMFT)
                );
        }

        // If the MFT supports attributes, copy the node attributes to the 
        // MFT attribute store. 
        if (SUCCEEDED(hr))
        {
            if (SUCCEEDED(pMFT->GetAttributes(&pAttributes)))
            {
                // Copy from pNode to pAttributes.
                hr = pNode->CopyAllItems(pAttributes); 
            }
        }

        // Set the object on the node.
        if (SUCCEEDED(hr))
        {
            hr = pNode->SetObject(pMFT);
        }
    }

    // Return the IMFTransform pointer to the caller.
    if (SUCCEEDED(hr))
    {
        *ppMFT = pMFT;
        (*ppMFT)->AddRef();
    }

    SafeRelease(&pNodeObject);
    SafeRelease(&pMFT);
    SafeRelease(&pActivate);
    SafeRelease(&pAttributes);
    return hr;
}

If the MFT has the MF_SA_D3D_AWARE attribute with the value TRUE, it means that the MFT supports DirectX Video Acceleration. The following function tests for this attribute:

// Returns TRUE is an MFT supports DirectX Video Acceleration.

BOOL IsTransformD3DAware(IMFTransform *pMFT)
{
    BOOL bD3DAware = FALSE;
    
    IMFAttributes *pAttributes = NULL;

    HRESULT hr = pMFT->GetAttributes(&pAttributes);
    if (SUCCEEDED(hr))
    {
        bD3DAware = MFGetAttributeUINT32(pAttributes, MF_SA_D3D_AWARE, FALSE);
        pAttributes->Release();
    }
    return bD3DAware;
}

To enable video acceleration on this MFT, call IMFTransform::ProcessMessage with the MFT_MESSAGE_SET_D3D_MANAGER message. Also set the MF_TOPONODE_D3DAWARE attribute to TRUE on the transform node. This attribute informs the pipeline that video acceleration has been enabled. The following code performs these steps:

// Enables or disables DirectX Video Acceleration in a topology.

HRESULT EnableVideoAcceleration(IMFTopology *pTopology, BOOL bEnable)
{
    IMFTopologyNode *pD3DManagerNode = NULL;
    IMFTopologyNode *pUpstreamNode = NULL;
    IUnknown *pD3DManager = NULL;
    IMFTransform *pMFT = NULL;

    // Look for the node that supports the Direct3D Manager.
    
    HRESULT hr = FindDeviceManager(pTopology, &pD3DManager, &pD3DManagerNode); 
    if (FAILED(hr))
    {
        //  There is no Direct3D device manager in the topology.
        //  This is not a failure case.
        return S_OK;
    }

    DWORD dwOutputIndex = 0;

    // Get the node upstream from the device manager node.
    hr = pD3DManagerNode->GetInput(0, &pUpstreamNode, &dwOutputIndex);

    // Get the MFT from the upstream node.
    if (SUCCEEDED(hr))
    {
        hr = GetTransformFromNode(pUpstreamNode, &pMFT);
    }

    // If the MFT is Direct3D-aware, notify the MFT of the device 
    // manager and mark the topology node as Direct3D-aware.
    if (SUCCEEDED(hr))
    {
        if (IsTransformD3DAware(pMFT))
        {
            ULONG_PTR ptr = bEnable ? (ULONG_PTR)pD3DManager : NULL;

            hr = pMFT->ProcessMessage(MFT_MESSAGE_SET_D3D_MANAGER, ptr);

            // Mark the node.
            if (SUCCEEDED(hr))
            {
                hr = pUpstreamNode->SetUINT32(MF_TOPONODE_D3DAWARE, bEnable);
            }
        }
    }

    SafeRelease(&pD3DManagerNode);
    SafeRelease(&pUpstreamNode);
    SafeRelease(&pD3DManager);
    SafeRelease(&pMFT);
    return hr;
}

For more information about DXVA in Media Foundation, see DirectX Video Acceleration 2.0.

Advanced Topology Building