Text Analysis Authoring - Get Model Evaluation Summary
학습된 모델의 평가 요약을 가져옵니다. 요약에는 모델의 높은 수준의 성능 측정(예: F1, Precision, Recall 등)이 포함됩니다.
GET {Endpoint}/language/authoring/analyze-text/projects/{projectName}/models/{trainedModelLabel}/evaluation/summary-result?api-version=2023-04-01
URI 매개 변수
Name | In(다음 안에) | 필수 | 형식 | Description |
---|---|---|---|---|
Endpoint
|
path | True |
string url |
지원되는 Cognitive Services 엔드포인트(예: https://.api.cognitiveservices.azure.com. |
project
|
path | True |
string |
사용할 프로젝트의 이름입니다. |
trained
|
path | True |
string |
학습된 모델 레이블입니다. |
api-version
|
query | True |
string |
이 작업에 사용할 API 버전입니다. |
응답
Name | 형식 | Description |
---|---|---|
200 OK | TextAnalysisAuthoringEvaluationSummary: |
요청이 성공했습니다. |
Other Status Codes |
예기치 않은 오류 응답입니다. |
보안
Ocp-Apim-Subscription-Key
형식:
apiKey
In(다음 안에):
header
OAuth2Auth
형식:
oauth2
Flow:
accessCode
권한 부여 URL:
https://login.microsoftonline.com/common/oauth2/authorize
토큰 URL:
https://login.microsoftonline.com/common/oauth2/token
범위
Name | Description |
---|---|
https://cognitiveservices.azure.com/.default |
예제
SuccessfulGetModelEvaluationSummary
샘플 요청
GET {Endpoint}/language/authoring/analyze-text/projects/LoanAgreements/models/model2/evaluation/summary-result?api-version=2023-04-01
샘플 응답
{
"projectKind": "CustomEntityRecognition",
"customEntityRecognitionEvaluation": {
"confusionMatrix": {
"BorrowerAddress": {
"BorrowerAddress": {
"normalizedValue": 86.206894,
"rawValue": 3.4482758
},
"$none": {
"normalizedValue": 13.793103,
"rawValue": 0.55172414
}
},
"BorrowerCity": {
"BorrowerCity": {
"normalizedValue": 100,
"rawValue": 4
}
},
"BorrowerName": {
"BorrowerName": {
"normalizedValue": 100,
"rawValue": 4
}
},
"BorrowerState": {
"BorrowerState": {
"normalizedValue": 100,
"rawValue": 4
}
},
"Date": {
"Date": {
"normalizedValue": 100,
"rawValue": 4
}
},
"Interest": {
"Interest": {
"normalizedValue": 100,
"rawValue": 4
}
},
"LenderAddress": {
"LenderAddress": {
"normalizedValue": 100,
"rawValue": 4
}
},
"LenderCity": {
"LenderCity": {
"normalizedValue": 100,
"rawValue": 4
}
},
"LenderName": {
"LenderName": {
"normalizedValue": 100,
"rawValue": 4
}
},
"LenderState": {
"LenderState": {
"normalizedValue": 100,
"rawValue": 4
}
},
"LoanAmountNumbers": {
"LoanAmountNumbers": {
"normalizedValue": 100,
"rawValue": 4
}
},
"LoanAmountWords": {
"LoanAmountWords": {
"normalizedValue": 100,
"rawValue": 4
}
},
"$none": {
"$none": {
"normalizedValue": 99.81485,
"rawValue": 51.90372
},
"BorrowerAddress": {
"normalizedValue": 0.18315019,
"rawValue": 0.0952381
},
"Interest": {
"normalizedValue": 0.002005294,
"rawValue": 0.0010427529
}
}
},
"entities": {
"Date": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"BorrowerName": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"BorrowerAddress": {
"f1": 0.6666666865348816,
"precision": 0.6000000238418579,
"recall": 0.75,
"truePositiveCount": 3,
"trueNegativeCount": 0,
"falsePositiveCount": 2,
"falseNegativeCount": 1
},
"BorrowerCity": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"BorrowerState": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"LenderName": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"LenderAddress": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"LenderCity": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"LenderState": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"LoanAmountWords": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"LoanAmountNumbers": {
"f1": 1,
"precision": 1,
"recall": 1,
"truePositiveCount": 4,
"trueNegativeCount": 0,
"falsePositiveCount": 0,
"falseNegativeCount": 0
},
"Interest": {
"f1": 0.75,
"precision": 0.75,
"recall": 0.75,
"truePositiveCount": 3,
"trueNegativeCount": 0,
"falsePositiveCount": 1,
"falseNegativeCount": 1
}
},
"microF1": 0.94845366,
"microPrecision": 0.93877554,
"microRecall": 0.9583333,
"macroF1": 0.9513889,
"macroPrecision": 0.9458334,
"macroRecall": 0.9583333
},
"evaluationOptions": {
"kind": "percentage",
"trainingSplitPercentage": 80,
"testingSplitPercentage": 20
}
}
정의
Error
오류 개체입니다.
Name | 형식 | Description |
---|---|---|
code |
서버에서 정의한 오류 코드 집합 중 하나입니다. |
|
details |
Error[] |
이 보고된 오류로 이어진 특정 오류에 대한 세부 정보 배열입니다. |
innererror |
오류에 대한 현재 개체보다 더 구체적인 정보를 포함하는 개체입니다. |
|
message |
string |
사람이 읽을 수 있는 오류 표현입니다. |
target |
string |
오류의 대상입니다. |
ErrorCode
사람이 읽을 수 있는 오류 코드입니다.
Name | 형식 | Description |
---|---|---|
AzureCognitiveSearchIndexLimitReached |
string |
|
AzureCognitiveSearchIndexNotFound |
string |
|
AzureCognitiveSearchNotFound |
string |
|
AzureCognitiveSearchThrottling |
string |
|
Conflict |
string |
|
Forbidden |
string |
|
InternalServerError |
string |
|
InvalidArgument |
string |
|
InvalidRequest |
string |
|
NotFound |
string |
|
OperationNotFound |
string |
|
ProjectNotFound |
string |
|
QuotaExceeded |
string |
|
ServiceUnavailable |
string |
|
Timeout |
string |
|
TooManyRequests |
string |
|
Unauthorized |
string |
|
Warning |
string |
ErrorResponse
오류 응답입니다.
Name | 형식 | Description |
---|---|---|
error |
오류 개체입니다. |
EvaluationKind
Name | 형식 | Description |
---|---|---|
manual |
string |
데이터의 모든 예제에 대해 선택한 데이터 세트에 따라 데이터를 분할합니다. |
percentage |
string |
사용자 정의 백분율에 따라 데이터를 학습 및 테스트 집합으로 분할합니다. |
InnerErrorCode
사람이 읽을 수 있는 오류 코드입니다.
Name | 형식 | Description |
---|---|---|
AzureCognitiveSearchNotFound |
string |
|
AzureCognitiveSearchThrottling |
string |
|
EmptyRequest |
string |
|
ExtractionFailure |
string |
|
InvalidCountryHint |
string |
|
InvalidDocument |
string |
|
InvalidDocumentBatch |
string |
|
InvalidParameterValue |
string |
|
InvalidRequest |
string |
|
InvalidRequestBodyFormat |
string |
|
KnowledgeBaseNotFound |
string |
|
MissingInputDocuments |
string |
|
ModelVersionIncorrect |
string |
|
UnsupportedLanguageCode |
string |
InnerErrorModel
오류에 대한 보다 구체적인 정보를 포함하는 개체입니다. Microsoft One API 지침에 따라 https://github.com/Microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses.
Name | 형식 | Description |
---|---|---|
code |
서버에서 정의한 오류 코드 집합 중 하나입니다. |
|
details |
object |
오류 세부 정보입니다. |
innererror |
오류에 대한 현재 개체보다 더 구체적인 정보를 포함하는 개체입니다. |
|
message |
string |
오류 메시지입니다. |
target |
string |
오류 대상입니다. |
ProjectKind
Name | 형식 | Description |
---|---|---|
CustomEntityRecognition |
string |
사용자 고유의 데이터를 사용하여 도메인 범주를 식별하는 추출 모델을 빌드합니다. |
CustomMultiLabelClassification |
string |
사용자 고유의 데이터를 사용하여 텍스트를 분류하는 분류 모델을 빌드하는 경우 각 파일에는 하나 이상의 레이블이 있을 수 있습니다. 예를 들어 파일 1은 A, B 및 C로 분류되고 파일 2는 B 및 C로 분류됩니다. |
CustomSingleLabelClassification |
string |
사용자 고유의 데이터를 사용하여 텍스트를 분류하는 분류 모델을 빌드하는 경우 각 파일에는 레이블이 하나만 있습니다. 예를 들어 파일 1은 A로 분류되고 파일 2는 B로 분류됩니다. |
TextAnalysisAuthoringCustomEntityRecognitionEvaluationSummary
사용자 지정 엔터티 인식 프로젝트에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
customEntityRecognitionEvaluation |
추출 평가와 관련된 데이터를 포함합니다. |
|
evaluationOptions |
평가를 실행하는 데 사용되는 옵션을 나타냅니다. |
|
projectKind |
string:
Custom |
평가가 실행된 프로젝트 형식을 나타냅니다. |
TextAnalysisAuthoringCustomMultiLabelClassificationEvaluationSummary
사용자 지정 다중 레이블 분류 프로젝트에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
customMultiLabelClassificationEvaluation |
Text |
다중 레이블 분류 평가와 관련된 데이터를 포함합니다. |
evaluationOptions |
평가를 실행하는 데 사용되는 옵션을 나타냅니다. |
|
projectKind |
string:
Custom |
평가가 실행된 프로젝트 형식을 나타냅니다. |
TextAnalysisAuthoringCustomSingleLabelClassificationEvaluationSummary
사용자 지정 단일 레이블 분류 프로젝트에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
customSingleLabelClassificationEvaluation |
Text |
단일 레이블 분류 평가와 관련된 데이터를 포함합니다. |
evaluationOptions |
평가를 실행하는 데 사용되는 옵션을 나타냅니다. |
|
projectKind |
string:
Custom |
평가가 실행된 프로젝트 형식을 나타냅니다. |
TextAnalysisAuthoringEntityEvaluationSummary
엔터티에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
f1 |
number |
모델 정밀도를 나타냅니다. |
falseNegativeCount |
integer |
가음성 수를 나타냅니다. |
falsePositiveCount |
integer |
가양성 수를 나타냅니다. |
precision |
number |
모델 회수를 나타냅니다. |
recall |
number |
모델 F1 점수를 나타냅니다. |
trueNegativeCount |
integer |
참 음수의 수를 나타냅니다. |
truePositiveCount |
integer |
진양성 수를 나타냅니다. |
TextAnalysisAuthoringEntityRecognitionEvaluationSummary
사용자 지정 엔터티 인식 프로젝트에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
confusionMatrix |
object |
두 엔터티 간의 혼동 행렬을 나타냅니다(두 엔터티는 같을 수 있습니다). 행렬은 레이블이 지정된 엔터티와 예측된 엔터티 사이에 있습니다. |
entities |
엔터티 평가를 나타냅니다. |
|
macroF1 |
number |
매크로 F1을 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
macroPrecision |
number |
매크로 전체 자릿수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
macroRecall |
number |
매크로 회수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microF1 |
number |
마이크로 F1을 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microPrecision |
number |
마이크로 정밀도를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microRecall |
number |
마이크로 회수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
TextAnalysisAuthoringEvaluationOptions
평가를 실행하는 데 사용되는 옵션을 나타냅니다.
Name | 형식 | Description |
---|---|---|
kind |
평가 종류를 나타냅니다. 기본적으로 평가 종류는 백분율로 설정됩니다. |
|
testingSplitPercentage |
integer |
테스트 데이터 세트 분할 비율을 나타냅니다. 평가 종류가 백분율인 경우에만 필요합니다. |
trainingSplitPercentage |
integer |
학습 데이터 세트 분할 비율을 나타냅니다. 평가 종류가 백분율인 경우에만 필요합니다. |
TextAnalysisAuthoringMultiLabelClassEvaluationSummary
다중 레이블 분류 프로젝트의 클래스에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
f1 |
number |
모델 정밀도를 나타냅니다. |
falseNegativeCount |
integer |
가음성 수를 나타냅니다. |
falsePositiveCount |
integer |
가양성 수를 나타냅니다. |
precision |
number |
모델 회수를 나타냅니다. |
recall |
number |
모델 F1 점수를 나타냅니다. |
trueNegativeCount |
integer |
참 음수의 수를 나타냅니다. |
truePositiveCount |
integer |
진양성 수를 나타냅니다. |
TextAnalysisAuthoringMultiLabelClassificationEvaluationSummary
다중 레이블 분류 프로젝트에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
classes |
<string,
Text |
클래스 평가를 나타냅니다. |
macroF1 |
number |
매크로 F1을 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
macroPrecision |
number |
매크로 전체 자릿수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
macroRecall |
number |
매크로 회수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microF1 |
number |
마이크로 F1을 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microPrecision |
number |
마이크로 정밀도를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microRecall |
number |
마이크로 회수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
TextAnalysisAuthoringSingleLabelClassEvaluationSummary
단일 레이블 분류 프로젝트의 클래스에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
f1 |
number |
모델 정밀도를 나타냅니다. |
falseNegativeCount |
integer |
가음성 수를 나타냅니다. |
falsePositiveCount |
integer |
가양성 수를 나타냅니다. |
precision |
number |
모델 회수를 나타냅니다. |
recall |
number |
모델 F1 점수를 나타냅니다. |
trueNegativeCount |
integer |
참 음수의 수를 나타냅니다. |
truePositiveCount |
integer |
진양성 수를 나타냅니다. |
TextAnalysisAuthoringSingleLabelClassificationEvaluationSummary
사용자 지정 단일 레이블 분류 프로젝트에 대한 평가 요약을 나타냅니다.
Name | 형식 | Description |
---|---|---|
classes |
<string,
Text |
클래스 평가를 나타냅니다. |
confusionMatrix |
object |
두 클래스 간의 혼동 행렬을 나타냅니다(두 클래스는 같을 수 있습니다). 행렬은 레이블이 지정된 클래스와 예측된 클래스 사이에 있습니다. |
macroF1 |
number |
매크로 F1을 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
macroPrecision |
number |
매크로 전체 자릿수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
macroRecall |
number |
매크로 회수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microF1 |
number |
마이크로 F1을 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microPrecision |
number |
마이크로 정밀도를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |
microRecall |
number |
마이크로 회수를 나타냅니다. 예상 값은 0에서 1 사이의 부동 소수 자릿수입니다. |