다음을 통해 공유


TruncationSelectionPolicy 클래스

각 평가 간격에서 지정된 비율의 실행을 취소하는 조기 종료 정책을 정의합니다.

상속
azure.ai.ml.entities._job.sweep.early_termination_policy.EarlyTerminationPolicy
TruncationSelectionPolicy

생성자

TruncationSelectionPolicy(*, delay_evaluation: int = 0, evaluation_interval: int = 0, truncation_percentage: int = 0)

키워드 전용 매개 변수

Name Description
delay_evaluation
int

첫 번째 평가를 지연할 간격의 수입니다. 기본값은 0입니다.

evaluation_interval
int

정책 평가 사이의 간격(실행 수)입니다. 기본값은 0입니다.

truncation_percentage
int

각 평가 간격에서 취소할 실행의 백분율입니다. 기본값은 0입니다.

예제

TruncationStoppingPolicy를 사용하여 하이퍼 매개 변수 스윕 작업에 대한 조기 종료 정책 구성


   from azure.ai.ml import command

   job = command(
       inputs=dict(kernel="linear", penalty=1.0),
       compute=cpu_cluster,
       environment=f"{job_env.name}:{job_env.version}",
       code="./scripts",
       command="python scripts/train.py --kernel $kernel --penalty $penalty",
       experiment_name="sklearn-iris-flowers",
   )

   # we can reuse an existing Command Job as a function that we can apply inputs to for the sweep configurations
   from azure.ai.ml.sweep import QUniform, TruncationSelectionPolicy, Uniform

   job_for_sweep = job(
       kernel=Uniform(min_value=0.0005, max_value=0.005),
       penalty=QUniform(min_value=0.05, max_value=0.75, q=1),
   )

   sweep_job = job_for_sweep.sweep(
       sampling_algorithm="random",
       primary_metric="best_val_acc",
       goal="Maximize",
       max_total_trials=8,
       max_concurrent_trials=4,
       early_termination_policy=TruncationSelectionPolicy(delay_evaluation=5, evaluation_interval=2),
   )