다음을 통해 공유


series_shapes_fl()

적용 대상: ✅Microsoft Fabric✅Azure Data ExplorerAzure MonitorMicrosoft Sentinel

이 함수 series_shapes_fl()일련의 양수/음수 추세를 감지하거나 점프하는 UDF(사용자 정의 함수) 입니다. 이 함수는 여러 시계열(동적 숫자 배열)이 포함된 테이블을 사용하고 각 계열의 추세 및 점프 점수를 계산합니다. 출력은 점수를 포함하는 사전(동적)입니다.

구문

T | extend series_shapes_fl(, 고급 y_series)

구문 규칙에 대해 자세히 알아봅니다.

매개 변수

이름 Type 필수 설명
y_series dynamic ✔️ 숫자 값의 배열 셀입니다.
advanced bool 기본값은 false입니다. 추가 계산 매개 변수를 출력하도록 true 설정합니다.

함수 정의

다음과 같이 해당 코드를 쿼리 정의 함수로 포함하거나 데이터베이스에 저장된 함수로 만들어 함수를 정의할 수 있습니다.

다음 let 문을 사용하여 함수를 정의합니다. 사용 권한이 필요 없습니다.

Important

let 문자체적으로 실행할 수 없습니다. 그 뒤에 테이블 형식 식 문이 있어야 합니다. 작업 예제 series_shapes_fl()를 실행하려면 예제를 참조 하세요.

let series_shapes_fl=(series:dynamic, advanced:bool=false)
{
    let n = array_length(series);
//  calculate normal dynamic range between 10th and 90th percentiles
    let xs = array_sort_asc(series);
    let low_idx = tolong(n*0.1);
    let high_idx = tolong(n*0.9);
    let low_pct = todouble(xs[low_idx]);
    let high_pct = todouble(xs[high_idx]);
    let norm_range = high_pct-low_pct;
//  trend score
    let lf = series_fit_line_dynamic(series);
    let slope = todouble(lf.slope);
    let rsquare = todouble(lf.rsquare);
    let rel_slope = abs(n*slope/norm_range);
    let sign_slope = iff(slope >= 0.0, 1.0, -1.0);
    let norm_slope = sign_slope*rel_slope/(rel_slope+0.1);  //  map rel_slope from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let trend_score = norm_slope*rsquare;
//  jump score
    let lf2=series_fit_2lines_dynamic(series);
    let lslope = todouble(lf2.left.slope);
    let rslope = todouble(lf2.right.slope);
    let rsquare2 = todouble(lf2.rsquare);
    let split_idx = tolong(lf2.split_idx);
    let last_left = todouble(lf2.left.interception)+lslope*split_idx;
    let first_right = todouble(lf2.right.interception)+rslope;
    let jump = first_right-last_left;
    let rel_jump = abs(jump/norm_range);
    let sign_jump = iff(first_right >= last_left, 1.0, -1.0);
    let norm_jump = sign_jump*rel_jump/(rel_jump+0.1);  //  map rel_jump from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let jump_score1 = norm_jump*rsquare2;
//  filter for jumps that are not close to the series edges and the right slope has the same direction
    let norm_rslope = abs(rslope/norm_range);
    let jump_score = iff((sign_jump*rslope >= 0.0 or norm_rslope < 0.02) and split_idx between((0.1*n)..(0.9*n)), jump_score1, 0.0);
    let res = iff(advanced, bag_pack("n", n, "low_pct", low_pct, "high_pct", high_pct, "norm_range", norm_range, "slope", slope, "rsquare", rsquare, "rel_slope", rel_slope, "norm_slope", norm_slope,
                              "trend_score", trend_score, "split_idx", split_idx, "jump", jump, "rsquare2", rsquare2, "last_left", last_left, "first_right", first_right, "rel_jump", rel_jump,
                              "lslope", lslope, "rslope", rslope, "norm_rslope", norm_rslope, "norm_jump", norm_jump, "jump_score", jump_score)
                              , bag_pack("trend_score", trend_score, "jump_score", jump_score));
    res
};
// Write your query to use the function here.

예시

쿼리 정의 함수를 사용하려면 포함된 함수 정의 후에 호출합니다.

let series_shapes_fl=(series:dynamic, advanced:bool=false)
{
    let n = array_length(series);
//  calculate normal dynamic range between 10th and 90th percentiles
    let xs = array_sort_asc(series);
    let low_idx = tolong(n*0.1);
    let high_idx = tolong(n*0.9);
    let low_pct = todouble(xs[low_idx]);
    let high_pct = todouble(xs[high_idx]);
    let norm_range = high_pct-low_pct;
//  trend score
    let lf = series_fit_line_dynamic(series);
    let slope = todouble(lf.slope);
    let rsquare = todouble(lf.rsquare);
    let rel_slope = abs(n*slope/norm_range);
    let sign_slope = iff(slope >= 0.0, 1.0, -1.0);
    let norm_slope = sign_slope*rel_slope/(rel_slope+0.1);  //  map rel_slope from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let trend_score = norm_slope*rsquare;
//  jump score
    let lf2=series_fit_2lines_dynamic(series);
    let lslope = todouble(lf2.left.slope);
    let rslope = todouble(lf2.right.slope);
    let rsquare2 = todouble(lf2.rsquare);
    let split_idx = tolong(lf2.split_idx);
    let last_left = todouble(lf2.left.interception)+lslope*split_idx;
    let first_right = todouble(lf2.right.interception)+rslope;
    let jump = first_right-last_left;
    let rel_jump = abs(jump/norm_range);
    let sign_jump = iff(first_right >= last_left, 1.0, -1.0);
    let norm_jump = sign_jump*rel_jump/(rel_jump+0.1);  //  map rel_jump from [-Inf, +Inf] to [-1, 1]; 0.1 is a clibration constant
    let jump_score1 = norm_jump*rsquare2;
//  filter for jumps that are not close to the series edges and the right slope has the same direction
    let norm_rslope = abs(rslope/norm_range);
    let jump_score = iff((sign_jump*rslope >= 0.0 or norm_rslope < 0.02) and split_idx between((0.1*n)..(0.9*n)), jump_score1, 0.0);
    let res = iff(advanced, bag_pack("n", n, "low_pct", low_pct, "high_pct", high_pct, "norm_range", norm_range, "slope", slope, "rsquare", rsquare, "rel_slope", rel_slope, "norm_slope", norm_slope,
                              "trend_score", trend_score, "split_idx", split_idx, "jump", jump, "rsquare2", rsquare2, "last_left", last_left, "first_right", first_right, "rel_jump", rel_jump,
                              "lslope", lslope, "rslope", rslope, "norm_rslope", norm_rslope, "norm_jump", norm_jump, "jump_score", jump_score)
                              , bag_pack("trend_score", trend_score, "jump_score", jump_score));
    res
};
let ts_len = 100;
let noise_pct = 2;
let noise_gain = 3;
union
(print tsid=1 | extend y = array_concat(repeat(20, ts_len/2), repeat(150, ts_len/2))),
(print tsid=2 | extend y = array_concat(repeat(0, ts_len*3/4), repeat(-50, ts_len/4))),
(print tsid=3 | extend y = range(40, 139, 1)),
(print tsid=4 | extend y = range(-20, -109, -1))
| extend x = range(1, array_length(y), 1)
//
| extend shapes = series_shapes_fl(y)
| order by tsid asc 
| fork (take 4) (project tsid, shapes)
| render timechart with(series=tsid, xcolumn=x, ycolumns=y)

출력

추세와 점프가 있는 4개의 시계열을 보여 주는 그래프입니다.

각 추세 및 점프 점수:

tsid	shapes
1	    {
          "trend_score": 0.703199714530169,
          "jump_score": 0.90909090909090906
        }
2	    {
          "trend_score": -0.51663751343174869,
          "jump_score": -0.90909090909090906
        }
3	    {
          "trend_score": 0.92592592592592582,
          "jump_score": 0.0
        }
4	    {
          "trend_score": -0.92592592592592582,
          "jump_score": 0.0
        }