TreeExtensions.FastForest 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
오버로드
FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, FastForestBinaryTrainer+Options) |
의사 결정 트리 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastForestBinaryTrainer 다. |
FastForest(RegressionCatalog+RegressionTrainers, FastForestRegressionTrainer+Options) |
의사 결정 트리 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastForestRegressionTrainer 다. |
FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32) |
만들기 FastForestBinaryTrainer- 의사 결정 트리 회귀 모델을 사용하여 대상을 예측합니다. |
FastForest(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32) |
만들기 FastForestRegressionTrainer- 의사 결정 트리 회귀 모델을 사용하여 대상을 예측합니다. |
FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, FastForestBinaryTrainer+Options)
의사 결정 트리 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastForestBinaryTrainer 다.
public static Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer FastForest (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer.Options options);
static member FastForest : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer.Options -> Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer
<Extension()>
Public Function FastForest (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As FastForestBinaryTrainer.Options) As FastForestBinaryTrainer
매개 변수
- options
- FastForestBinaryTrainer.Options
트레이너 옵션.
반환
예제
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class FastForestWithOptions
{
// This example requires installation of additional NuGet package for
// Microsoft.ML.FastTree at
// https://www.nuget.org/packages/Microsoft.ML.FastTree/
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new FastForestBinaryTrainer.Options
{
// Only use 80% of features to reduce over-fitting.
FeatureFraction = 0.8,
// Create a simpler model by penalizing usage of new features.
FeatureFirstUsePenalty = 0.1,
// Reduce the number of trees to 50.
NumberOfTrees = 50
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.FastForest(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: True
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.73
// AUC: 0.81
// F1 Score: 0.73
// Negative Precision: 0.77
// Negative Recall: 0.68
// Positive Precision: 0.69
// Positive Recall: 0.78
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 186 | 52 | 0.7815
// negative || 77 | 185 | 0.7061
// ||======================
// Precision || 0.7072 | 0.7806 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.03f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
적용 대상
FastForest(RegressionCatalog+RegressionTrainers, FastForestRegressionTrainer+Options)
의사 결정 트리 회귀 모델을 사용하여 대상을 예측하는 고급 옵션을 사용하여 만듭니 FastForestRegressionTrainer 다.
public static Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer FastForest (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer.Options options);
static member FastForest : Microsoft.ML.RegressionCatalog.RegressionTrainers * Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer.Options -> Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer
<Extension()>
Public Function FastForest (catalog As RegressionCatalog.RegressionTrainers, options As FastForestRegressionTrainer.Options) As FastForestRegressionTrainer
매개 변수
트레이너 옵션.
반환
예제
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;
namespace Samples.Dynamic.Trainers.Regression
{
public static class FastForestWithOptionsRegression
{
// This example requires installation of additional NuGet
// package for Microsoft.ML.FastTree found at
// https://www.nuget.org/packages/Microsoft.ML.FastTree/
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new FastForestRegressionTrainer.Options
{
LabelColumnName = nameof(DataPoint.Label),
FeatureColumnName = nameof(DataPoint.Features),
// Only use 80% of features to reduce over-fitting.
FeatureFraction = 0.8,
// Create a simpler model by penalizing usage of new features.
FeatureFirstUsePenalty = 0.1,
// Reduce the number of trees to 50.
NumberOfTrees = 50
};
// Define the trainer.
var pipeline =
mlContext.Regression.Trainers.FastForest(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data.LoadFromEnumerable(
GenerateRandomDataPoints(5, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(
transformedTestData, reuseRowObject: false).ToList();
// Look at 5 predictions for the Label, side by side with the actual
// Label for comparison.
foreach (var p in predictions)
Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");
// Expected output:
// Label: 0.985, Prediction: 0.866
// Label: 0.155, Prediction: 0.171
// Label: 0.515, Prediction: 0.470
// Label: 0.566, Prediction: 0.476
// Label: 0.096, Prediction: 0.140
// Evaluate the overall metrics
var metrics = mlContext.Regression.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Mean Absolute Error: 0.06
// Mean Squared Error: 0.01
// Root Mean Squared Error: 0.07
// RSquared: 0.95 (closer to 1 is better. The worst case is 0)
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
for (int i = 0; i < count; i++)
{
float label = (float)random.NextDouble();
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
Features = Enumerable.Repeat(label, 50).Select(
x => x + (float)random.NextDouble()).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public float Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public float Label { get; set; }
// Predicted score from the trainer.
public float Score { get; set; }
}
// Print some evaluation metrics to regression problems.
private static void PrintMetrics(RegressionMetrics metrics)
{
Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Console.WriteLine(
"Root Mean Squared Error: " + metrics.RootMeanSquaredError);
Console.WriteLine("RSquared: " + metrics.RSquared);
}
}
}
적용 대상
FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32)
만들기 FastForestBinaryTrainer- 의사 결정 트리 회귀 모델을 사용하여 대상을 예측합니다.
public static Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer FastForest (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfLeaves = 20, int numberOfTrees = 100, int minimumExampleCountPerLeaf = 10);
static member FastForest : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int * int * int -> Microsoft.ML.Trainers.FastTree.FastForestBinaryTrainer
<Extension()>
Public Function FastForest (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfLeaves As Integer = 20, Optional numberOfTrees As Integer = 100, Optional minimumExampleCountPerLeaf As Integer = 10) As FastForestBinaryTrainer
매개 변수
- exampleWeightColumnName
- String
예제 가중치 열의 이름(선택 사항)입니다.
- numberOfLeaves
- Int32
의사 결정 트리당 최대 리프 수입니다.
- numberOfTrees
- Int32
앙상블에서 만들 의사 결정 트리의 총 수입니다.
- minimumExampleCountPerLeaf
- Int32
새 트리 리프를 구성하는 데 필요한 최소 데이터 요소 수입니다.
반환
예제
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class FastForest
{
// This example requires installation of additional NuGet package for
// Microsoft.ML.FastTree at
// https://www.nuget.org/packages/Microsoft.ML.FastTree/
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.FastForest();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: False
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.74
// AUC: 0.83
// F1 Score: 0.74
// Negative Precision: 0.78
// Negative Recall: 0.71
// Positive Precision: 0.71
// Positive Recall: 0.78
//
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 34 | 204 | 0.1429
// negative || 21 | 241 | 0.9198
// ||======================
// Precision || 0.6182 | 0.5416 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.03f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
적용 대상
FastForest(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32)
만들기 FastForestRegressionTrainer- 의사 결정 트리 회귀 모델을 사용하여 대상을 예측합니다.
public static Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer FastForest (this Microsoft.ML.RegressionCatalog.RegressionTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfLeaves = 20, int numberOfTrees = 100, int minimumExampleCountPerLeaf = 10);
static member FastForest : Microsoft.ML.RegressionCatalog.RegressionTrainers * string * string * string * int * int * int -> Microsoft.ML.Trainers.FastTree.FastForestRegressionTrainer
<Extension()>
Public Function FastForest (catalog As RegressionCatalog.RegressionTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfLeaves As Integer = 20, Optional numberOfTrees As Integer = 100, Optional minimumExampleCountPerLeaf As Integer = 10) As FastForestRegressionTrainer
매개 변수
- exampleWeightColumnName
- String
예제 가중치 열의 이름(선택 사항)입니다.
- numberOfLeaves
- Int32
의사 결정 트리당 최대 리프 수입니다.
- numberOfTrees
- Int32
앙상블에서 만들 의사 결정 트리의 총 수입니다.
- minimumExampleCountPerLeaf
- Int32
새 트리 리프를 구성하는 데 필요한 최소 데이터 요소 수입니다.
반환
예제
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.Regression
{
public static class FastForestRegression
{
// This example requires installation of additional NuGet
// package for Microsoft.ML.FastTree found at
// https://www.nuget.org/packages/Microsoft.ML.FastTree/
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.Regression.Trainers.FastForest(
labelColumnName: nameof(DataPoint.Label),
featureColumnName: nameof(DataPoint.Features));
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data.LoadFromEnumerable(
GenerateRandomDataPoints(5, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data.CreateEnumerable<Prediction>(
transformedTestData, reuseRowObject: false).ToList();
// Look at 5 predictions for the Label, side by side with the actual
// Label for comparison.
foreach (var p in predictions)
Console.WriteLine($"Label: {p.Label:F3}, Prediction: {p.Score:F3}");
// Expected output:
// Label: 0.985, Prediction: 0.864
// Label: 0.155, Prediction: 0.164
// Label: 0.515, Prediction: 0.470
// Label: 0.566, Prediction: 0.501
// Label: 0.096, Prediction: 0.138
// Evaluate the overall metrics
var metrics = mlContext.Regression.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Mean Absolute Error: 0.06
// Mean Squared Error: 0.00
// Root Mean Squared Error: 0.07
// RSquared: 0.96 (closer to 1 is better. The worst case is 0)
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
for (int i = 0; i < count; i++)
{
float label = (float)random.NextDouble();
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
Features = Enumerable.Repeat(label, 50).Select(
x => x + (float)random.NextDouble()).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public float Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public float Label { get; set; }
// Predicted score from the trainer.
public float Score { get; set; }
}
// Print some evaluation metrics to regression problems.
private static void PrintMetrics(RegressionMetrics metrics)
{
Console.WriteLine("Mean Absolute Error: " + metrics.MeanAbsoluteError);
Console.WriteLine("Mean Squared Error: " + metrics.MeanSquaredError);
Console.WriteLine(
"Root Mean Squared Error: " + metrics.RootMeanSquaredError);
Console.WriteLine("RSquared: " + metrics.RSquared);
}
}
}