TimeSeriesCatalog.LocalizeRootCause 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
만들기 RootCause- 의사 결정 트리 알고리즘을 사용하여 근본 원인을 지역화합니다.
public static Microsoft.ML.TimeSeries.RootCause LocalizeRootCause (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.TimeSeries.RootCauseLocalizationInput src, double beta = 0.3, double rootCauseThreshold = 0.95);
static member LocalizeRootCause : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.TimeSeries.RootCauseLocalizationInput * double * double -> Microsoft.ML.TimeSeries.RootCause
<Extension()>
Public Function LocalizeRootCause (catalog As AnomalyDetectionCatalog, src As RootCauseLocalizationInput, Optional beta As Double = 0.3, Optional rootCauseThreshold As Double = 0.95) As RootCause
매개 변수
- catalog
- AnomalyDetectionCatalog
변칙 검색 카탈로그입니다.
근본 원인의 입력입니다. 데이터는 .의 RootCauseLocalizationInput인스턴스입니다.
- beta
- Double
베타는 사용자가 선택할 수 있는 가중치 매개 변수입니다. 각 근본 원인 항목에 대해 점수를 계산할 때 사용됩니다. 베타 범위는 [0,1]에 있어야 합니다. 더 큰 베타의 경우 값과 예상 값 간에 큰 차이가 있는 근본 원인 항목은 높은 점수를 얻습니다. 작은 베타의 경우 상대적인 변경이 높은 근본 원인 항목은 낮은 점수를 얻습니다.
- rootCauseThreshold
- Double
지점이 근본 원인인지 여부를 결정하는 임계값입니다. 이 임계값의 범위는 [0,1]에 있어야 합니다. 점의 델타가 rootCauseThreshold와 같거나 크거나 변칙 차원 점의 델타를 곱한 경우 이 지점은 근본 원인으로 처리됩니다. 임계값이 다르면 결과가 달라집니다. 사용자는 데이터 및 요구 사항에 따라 델타를 선택할 수 있습니다.
반환
예제
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class LocalizeRootCause
{
// In the root cause detection input, this string identifies an aggregation as opposed to a dimension value"
private static string AGG_SYMBOL = "##SUM##";
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create an root cause localization input instance.
DateTime timestamp = GetTimestamp();
var data = new RootCauseLocalizationInput(timestamp, GetAnomalyDimension(), new List<MetricSlice>() { new MetricSlice(timestamp, GetPoints()) }, AggregateType.Sum, AGG_SYMBOL);
// Get the root cause localization result.
RootCause prediction = mlContext.AnomalyDetection.LocalizeRootCause(data);
// Print the localization result.
int count = 0;
foreach (RootCauseItem item in prediction.Items)
{
count++;
Console.WriteLine($"Root cause item #{count} ...");
Console.WriteLine($"Score: {item.Score}, Path: {String.Join(" ", item.Path)}, Direction: {item.Direction}, Dimension:{String.Join(" ", item.Dimension)}");
}
//Item #1 ...
//Score: 0.26670448876705927, Path: DataCenter, Direction: Up, Dimension:[Country, UK] [DeviceType, ##SUM##] [DataCenter, DC1]
}
private static List<TimeSeriesPoint> GetPoints()
{
List<TimeSeriesPoint> points = new List<TimeSeriesPoint>();
Dictionary<string, Object> dic1 = new Dictionary<string, Object>();
dic1.Add("Country", "UK");
dic1.Add("DeviceType", "Laptop");
dic1.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(200, 100, true, dic1));
Dictionary<string, Object> dic2 = new Dictionary<string, Object>();
dic2.Add("Country", "UK");
dic2.Add("DeviceType", "Mobile");
dic2.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(1000, 100, true, dic2));
Dictionary<string, Object> dic3 = new Dictionary<string, Object>();
dic3.Add("Country", "UK");
dic3.Add("DeviceType", AGG_SYMBOL);
dic3.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(1200, 200, true, dic3));
Dictionary<string, Object> dic4 = new Dictionary<string, Object>();
dic4.Add("Country", "UK");
dic4.Add("DeviceType", "Laptop");
dic4.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(100, 100, false, dic4));
Dictionary<string, Object> dic5 = new Dictionary<string, Object>();
dic5.Add("Country", "UK");
dic5.Add("DeviceType", "Mobile");
dic5.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(200, 200, false, dic5));
Dictionary<string, Object> dic6 = new Dictionary<string, Object>();
dic6.Add("Country", "UK");
dic6.Add("DeviceType", AGG_SYMBOL);
dic6.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(300, 300, false, dic6));
Dictionary<string, Object> dic7 = new Dictionary<string, Object>();
dic7.Add("Country", "UK");
dic7.Add("DeviceType", AGG_SYMBOL);
dic7.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(1500, 500, true, dic7));
Dictionary<string, Object> dic8 = new Dictionary<string, Object>();
dic8.Add("Country", "UK");
dic8.Add("DeviceType", "Laptop");
dic8.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(300, 200, true, dic8));
Dictionary<string, Object> dic9 = new Dictionary<string, Object>();
dic9.Add("Country", "UK");
dic9.Add("DeviceType", "Mobile");
dic9.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(1200, 300, true, dic9));
return points;
}
private static Dictionary<string, Object> GetAnomalyDimension()
{
Dictionary<string, Object> dim = new Dictionary<string, Object>();
dim.Add("Country", "UK");
dim.Add("DeviceType", AGG_SYMBOL);
dim.Add("DataCenter", AGG_SYMBOL);
return dim;
}
private static DateTime GetTimestamp()
{
return new DateTime(2020, 3, 23, 0, 0, 0);
}
}
}