TextLoaderSaverCatalog.SaveAsText 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
텍스트로 IDataView 저장합니다.
public static void SaveAsText (this Microsoft.ML.DataOperationsCatalog catalog, Microsoft.ML.IDataView data, System.IO.Stream stream, char separatorChar = '\t', bool headerRow = true, bool schema = true, bool keepHidden = false, bool forceDense = false);
static member SaveAsText : Microsoft.ML.DataOperationsCatalog * Microsoft.ML.IDataView * System.IO.Stream * char * bool * bool * bool * bool -> unit
<Extension()>
Public Sub SaveAsText (catalog As DataOperationsCatalog, data As IDataView, stream As Stream, Optional separatorChar As Char = '\t', Optional headerRow As Boolean = true, Optional schema As Boolean = true, Optional keepHidden As Boolean = false, Optional forceDense As Boolean = false)
매개 변수
- catalog
- DataOperationsCatalog
카탈로그입니다 DataOperationsCatalog .
- data
- IDataView
저장할 데이터 뷰입니다.
- stream
- Stream
쓸 스트림입니다.
- separatorChar
- Char
열 구분 기호입니다.
- headerRow
- Boolean
머리글 행을 쓸지 여부입니다.
- schema
- Boolean
스키마를 사용하여 헤더 주석을 쓸지 여부입니다.
- keepHidden
- Boolean
데이터 세트에 숨겨진 열을 유지할지 여부입니다.
- forceDense
- Boolean
스파스 벡터인 경우에도 열을 조밀한 형식으로 저장할지 여부입니다.
예제
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class SaveAndLoadFromText
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = new List<DataPoint>()
{
new DataPoint(){ Label = 0, Features = 4},
new DataPoint(){ Label = 0, Features = 5},
new DataPoint(){ Label = 0, Features = 6},
new DataPoint(){ Label = 1, Features = 8},
new DataPoint(){ Label = 1, Features = 9},
};
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
IDataView data = mlContext.Data.LoadFromEnumerable(dataPoints);
// Create a FileStream object and write the IDataView to it as a text
// file.
using (FileStream stream = new FileStream("data.tsv", FileMode.Create))
mlContext.Data.SaveAsText(data, stream);
// Create an IDataView object by loading the text file.
IDataView loadedData = mlContext.Data.LoadFromTextFile("data.tsv");
// Inspect the data that is loaded from the previously saved text file.
var loadedDataEnumerable = mlContext.Data
.CreateEnumerable<DataPoint>(loadedData, reuseRowObject: false);
foreach (DataPoint row in loadedDataEnumerable)
Console.WriteLine($"{row.Label}, {row.Features}");
// Preview of the loaded data.
// 0, 4
// 0, 5
// 0, 6
// 1, 8
// 1, 9
}
// Example with label and feature values. A data set is a collection of such
// examples.
private class DataPoint
{
public float Label { get; set; }
public float Features { get; set; }
}
}
}