ConversionsCatalog.MapKeyToBinaryVector 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
Create a KeyToBinaryVectorMappingEstimator, which converts key types to their corresponding binary representation of the original value.
public static Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator MapKeyToBinaryVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default);
static member MapKeyToBinaryVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string -> Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator
<Extension()>
Public Function MapKeyToBinaryVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As KeyToBinaryVectorMappingEstimator
매개 변수
범주 변환의 카탈로그입니다.
- outputColumnName
- String
의 변환에서 생성된 열의 inputColumnName
이름입니다.
데이터 형식은 입력 값을 나타내는 알려진 크기의 벡터 Single 입니다.
- inputColumnName
- String
변환할 열의 이름입니다. 이 값으로 null
설정하면 값이 outputColumnName
원본으로 사용됩니다.
데이터 형식은 키 또는 키의 알려진 크기 벡터입니다.
반환
예제
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class MapKeyToBinaryVector
{
/// This example demonstrates the use of MapKeyToVector by mapping keys to
/// floats[] of 0 and 1, representing the number in binary format.
/// Because the ML.NET KeyType maps the missing value to zero, counting
/// starts at 1, so the uint values converted to KeyTypes will appear
/// skewed by one.
/// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = 9 },
new DataPoint() { Timeframe = 8 },
new DataPoint() { Timeframe = 8 },
new DataPoint() { Timeframe = 9 },
new DataPoint() { Timeframe = 2 },
new DataPoint() { Timeframe = 3 }
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Constructs the ML.net pipeline
var pipeline = mlContext.Transforms.Conversion.MapKeyToBinaryVector(
"TimeframeVector", "Timeframe");
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine($" Timeframe TimeframeVector");
foreach (var featureRow in features)
Console.WriteLine($"{featureRow.Timeframe}\t\t\t" +
$"{string.Join(',', featureRow.TimeframeVector)}");
// Timeframe TimeframeVector
// 10 0,1,0,0,1 //binary representation of 9, the original value
// 9 0,1,0,0,0 //binary representation of 8, the original value
// 9 0,1,0,0,0
// 10 0,1,0,0,1
// 3 0,0,0,1,0
// 4 0,0,0,1,1
}
private class DataPoint
{
[KeyType(10)]
public uint Timeframe { get; set; }
}
private class TransformedData : DataPoint
{
public float[] TimeframeVector { get; set; }
}
}
}