ISerializable Interface
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Serializability of a class is enabled by the class implementing the java.
[Android.Runtime.Register("java/io/Serializable", "", "Java.IO.ISerializableInvoker")]
public interface ISerializable : Android.Runtime.IJavaObject, IDisposable, Java.Interop.IJavaPeerable
[<Android.Runtime.Register("java/io/Serializable", "", "Java.IO.ISerializableInvoker")>]
type ISerializable = interface
interface IJavaObject
interface IDisposable
interface IJavaPeerable
- Derived
- Attributes
- Implements
Remarks
Serializability of a class is enabled by the class implementing the java.io.Serializable interface.
<strong>Warning: Deserialization of untrusted data is inherently dangerous and should be avoided. Untrusted data should be carefully validated. </strong>
Classes that do not implement this interface will not have any of their state serialized or deserialized. All subtypes of a serializable class are themselves serializable. The serialization interface has no methods or fields and serves only to identify the semantics of being serializable.
To allow subtypes of non-serializable classes to be serialized, the subtype may assume responsibility for saving and restoring the state of the supertype's public, protected, and (if accessible) package fields. The subtype may assume this responsibility only if the class it extends has an accessible no-arg constructor to initialize the class's state. It is an error to declare a class Serializable if this is not the case. The error will be detected at runtime.
During deserialization, the fields of non-serializable classes will be initialized using the public or protected no-arg constructor of the class. A no-arg constructor must be accessible to the subclass that is serializable. The fields of serializable subclasses will be restored from the stream.
When traversing a graph, an object may be encountered that does not support the Serializable interface. In this case the NotSerializableException will be thrown and will identify the class of the non-serializable object.
Classes that require special handling during the serialization and deserialization process must implement special methods with these exact signatures:
private void writeObject(java.io.ObjectOutputStream out)
throws IOException
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException;
private void readObjectNoData()
throws ObjectStreamException;
The writeObject method is responsible for writing the state of the object for its particular class so that the corresponding readObject method can restore it. The default mechanism for saving the Object's fields can be invoked by calling out.defaultWriteObject. The method does not need to concern itself with the state belonging to its superclasses or subclasses. State is saved by writing the individual fields to the ObjectOutputStream using the writeObject method or by using the methods for primitive data types supported by DataOutput.
The readObject method is responsible for reading from the stream and restoring the classes fields. It may call in.defaultReadObject to invoke the default mechanism for restoring the object's non-static and non-transient fields. The defaultReadObject method uses information in the stream to assign the fields of the object saved in the stream with the correspondingly named fields in the current object. This handles the case when the class has evolved to add new fields. The method does not need to concern itself with the state belonging to its superclasses or subclasses. State is restored by reading data from the ObjectInputStream for the individual fields and making assignments to the appropriate fields of the object. Reading primitive data types is supported by DataInput.
The readObjectNoData method is responsible for initializing the state of the object for its particular class in the event that the serialization stream does not list the given class as a superclass of the object being deserialized. This may occur in cases where the receiving party uses a different version of the deserialized instance's class than the sending party, and the receiver's version extends classes that are not extended by the sender's version. This may also occur if the serialization stream has been tampered; hence, readObjectNoData is useful for initializing deserialized objects properly despite a "hostile" or incomplete source stream.
Serializable classes that need to designate an alternative object to be used when writing an object to the stream should implement this special method with the exact signature:
ANY-ACCESS-MODIFIER Object writeReplace() throws ObjectStreamException;
This writeReplace method is invoked by serialization if the method exists and it would be accessible from a method defined within the class of the object being serialized. Thus, the method can have private, protected and package-private access. Subclass access to this method follows java accessibility rules.
Classes that need to designate a replacement when an instance of it is read from the stream should implement this special method with the exact signature.
ANY-ACCESS-MODIFIER Object readResolve() throws ObjectStreamException;
This readResolve method follows the same invocation rules and accessibility rules as writeReplace.
The serialization runtime associates with each serializable class a version number, called a serialVersionUID, which is used during deserialization to verify that the sender and receiver of a serialized object have loaded classes for that object that are compatible with respect to serialization. If the receiver has loaded a class for the object that has a different serialVersionUID than that of the corresponding sender's class, then deserialization will result in an InvalidClassException
. A serializable class can declare its own serialVersionUID explicitly by declaring a field named "serialVersionUID"
that must be static, final, and of type long
:
ANY-ACCESS-MODIFIER static final long serialVersionUID = 42L;
If a serializable class does not explicitly declare a serialVersionUID, then the serialization runtime will calculate a default serialVersionUID value for that class based on various aspects of the class, as described in the Java(TM) Object Serialization Specification. However, it is <em>strongly recommended</em> that all serializable classes explicitly declare serialVersionUID values, since the default serialVersionUID computation is highly sensitive to class details that may vary depending on compiler implementations, and can thus result in unexpected InvalidClassException
s during deserialization. Therefore, to guarantee a consistent serialVersionUID value across different java compiler implementations, a serializable class must declare an explicit serialVersionUID value. It is also strongly advised that explicit serialVersionUID declarations use the private
modifier where possible, since such declarations apply only to the immediately declaring class--serialVersionUID fields are not useful as inherited members. Array classes cannot declare an explicit serialVersionUID, so they always have the default computed value, but the requirement for matching serialVersionUID values is waived for array classes.
Android implementation of serialVersionUID computation will change slightly for some classes if you're targeting android N. In order to preserve compatibility, this change is only enabled if the application target SDK version is set to 24 or higher. It is highly recommended to use an explicit serialVersionUID field to avoid compatibility issues.
<h3>Implement Serializable Judiciously</h3> Refer to Effective Java's chapter on serialization for thorough coverage of the serialization API. The book explains how to use this interface without harming your application's maintainability.
<h3>Recommended Alternatives</h3> <strong>JSON</strong> is concise, human-readable and efficient. Android includes both a android.util.JsonReader streaming API
and a org.json.JSONObject tree API
to read and write JSON. Use a binding library like GSON to read and write Java objects directly.
Added in 1.1.
Java documentation for java.io.Serializable
.
Portions of this page are modifications based on work created and shared by the Android Open Source Project and used according to terms described in the Creative Commons 2.5 Attribution License.
Properties
Handle |
Gets the JNI value of the underlying Android object. (Inherited from IJavaObject) |
JniIdentityHashCode |
Returns the value of |
JniManagedPeerState |
State of the managed peer. (Inherited from IJavaPeerable) |
JniPeerMembers |
Member access and invocation support. (Inherited from IJavaPeerable) |
PeerReference |
Returns a JniObjectReference of the wrapped Java object instance. (Inherited from IJavaPeerable) |
Methods
Disposed() |
Called when the instance has been disposed. (Inherited from IJavaPeerable) |
DisposeUnlessReferenced() |
If there are no outstanding references to this instance, then
calls |
Finalized() |
Called when the instance has been finalized. (Inherited from IJavaPeerable) |
SetJniIdentityHashCode(Int32) |
Set the value returned by |
SetJniManagedPeerState(JniManagedPeerStates) | (Inherited from IJavaPeerable) |
SetPeerReference(JniObjectReference) |
Set the value returned by |
UnregisterFromRuntime() |
Unregister this instance so that the runtime will not return it from future Java.Interop.JniRuntime+JniValueManager.PeekValue invocations. (Inherited from IJavaPeerable) |
Extension Methods
JavaCast<TResult>(IJavaObject) |
Performs an Android runtime-checked type conversion. |
JavaCast<TResult>(IJavaObject) | |
GetJniTypeName(IJavaPeerable) |
Gets the JNI name of the type of the instance |
JavaAs<TResult>(IJavaPeerable) |
Try to coerce |
TryJavaCast<TResult>(IJavaPeerable, TResult) |
Try to coerce |