다음을 통해 공유


fisher_f_distribution 클래스

피셔 F 함수를 생성합니다.

구문

template<class RealType = double>
class fisher_f_distribution
   {
public:
   // types
   typedef RealType result_type;
   struct param_type;  // constructor and reset functions
   explicit fisher_f_distribution(result_type m = 1.0, result_type n = 1.0);
   explicit fisher_f_distribution(const param_type& parm);
   void reset();

   // generating functions
   template <class URNG>
   result_type operator()(URNG& gen);
   template <class URNG>
   result_type operator()(URNG& gen, const param_type& parm);

   // property functions
   result_type m() const;
   result_type n() const;
   param_type param() const;
   void param(const param_type& parm);
   result_type min() const;
   result_type max() const;
   };

매개 변수

RealType
부동 소수점 결과 형식으로, 기본적으로 double로 지정되어 있습니다. 가능한 형식은 임>의 형식을 참조하세요<.

URNG
균일한 난수 생성기 엔진입니다. 가능한 형식은 임>의 형식을 참조하세요<.

설명

클래스 템플릿은 사용자가 지정한 부동 소수점 형식의 값을 생성하는 분포를 설명합니다. 그렇지 않은 경우 형식 double 은 Fisher의 F-Distribution에 따라 배포됩니다. 다음 테이블은 개별 멤버에 대한 문서와 연결되어 있습니다.

fisher_f_distribution
param_type

속성 함수 m()n()은 저장된 분포 매개 변수인 mn 각각에 대한 값을 반환합니다.

속성 멤버 param()param_type으로 저장된 분포 매개 변수 패키지를 설정하거나 반환합니다.

min()max() 구성원 함수는 각각 가능한 가장 작은 결과 및 가능한 가장 큰 결과를 반환합니다.

reset() 구성원 함수는 캐시된 모든 값을 버립니다. 따라서 operator()에 대한 다음 호출의 결과는 호출 전 엔진에서 얻은 어떠한 값의 영향도 받지 않습니다.

operator() 구성원 함수는 현재 매개 변수 패키지 또는 지정된 매개 변수 패키지에서 URNG 엔진을 기반으로 하여 다음에 생성된 값을 반환합니다.

배포 클래스 및 해당 멤버에 대한 자세한 내용은 임>의 클래스를 참조<하세요.

F-분포에 대한 자세한 내용은 Wolfram MathWorld 문서 Cauchy Distribution(F-분포)을 참조하세요.

예시

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

void test(const double m, const double n, const int s) {

    // uncomment to use a non-deterministic seed
    //    std::random_device rd;
    //    std::mt19937 gen(rd());
    std::mt19937 gen(1701);

    std::fisher_f_distribution<> distr(m, n);

    std::cout << std::endl;
    std::cout << "min() == " << distr.min() << std::endl;
    std::cout << "max() == " << distr.max() << std::endl;
    std::cout << "m() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.m() << std::endl;
    std::cout << "n() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.n() << std::endl;

    // generate the distribution as a histogram
    std::map<double, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    std::cout << "Distribution for " << s << " samples:" << std::endl;
    int counter = 0;
    for (const auto& elem : histogram) {
        std::cout << std::fixed << std::setw(11) << ++counter << ": "
            << std::setw(14) << std::setprecision(10) << elem.first << std::endl;
    }
    std::cout << std::endl;
}

int main()
{
    double m_dist = 1;
    double n_dist = 1;
    int samples = 10;

    std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
    std::cout << "Enter a floating point value for the \'m\' distribution parameter (must be greater than zero): ";
    std::cin >> m_dist;
    std::cout << "Enter a floating point value for the \'n\' distribution parameter (must be greater than zero): ";
    std::cin >> n_dist;
    std::cout << "Enter an integer value for the sample count: ";
    std::cin >> samples;

    test(m_dist, n_dist, samples);
}

출력

첫 번째 실행:

Enter a floating point value for the 'm' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10

min() == 0
max() == 1.79769e+308
m() == 1.0000000000
n() == 1.0000000000
Distribution for 10 samples:
    1: 0.0204569549
    2: 0.0221376644
    3: 0.0297234962
    4: 0.1600937252
    5: 0.2775342196
    6: 0.3950701700
    7: 0.8363200295
    8: 0.9512500702
    9: 2.7844815974
    10: 3.4320929653

두 번째 실행:

Enter a floating point value for the 'm' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .1
Enter an integer value for the sample count: 10

min() == 0
max() == 1.79769e+308
m() == 1.0000000000
n() == 0.1000000000
Distribution for 10 samples:
    1: 0.0977725649
    2: 0.5304122767
    3: 4.9468518084
    4: 25.1012074939
    5: 48.8082121613
    6: 401.8075539377
    7: 8199.5947873699
    8: 226492.6855335717
    9: 2782062.6639740225
    10: 20829747131.7185860000

세 번째 실행:

Enter a floating point value for the 'm' distribution parameter (must be greater than zero): .1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10

min() == 0
max() == 1.79769e+308
m() == 0.1000000000
n() == 1.0000000000
Distribution for 10 samples:
    1: 0.0000000000
    2: 0.0000000000
    3: 0.0000000000
    4: 0.0000000000
    5: 0.0000000033
    6: 0.0000073975
    7: 0.0000703800
    8: 0.0280427735
    9: 0.2660239949
    10: 3.4363333954

요구 사항

헤더:<random>

네임스페이스: std

fisher_f_distribution::fisher_f_distribution

분포를 생성합니다.

explicit fisher_f_distribution(result_type m = 1.0, result_type n = 1.0);
explicit fisher_f_distribution(const param_type& parm);

매개 변수

m
m 분포 매개 변수입니다.

n
n 분포 매개 변수입니다.

parm
분포를 생성하는 데 사용되는 param_type 구조체입니다.

설명

전제 조건: 0.0 < m0.0 < n

첫 번째 생성자는 저장된 m 값이 m 값을 보유하고 저장된 n 값이 n 값을 보유하고 있는 개체를 생성합니다.

두 번째 생성자는 저장된 매개 변수가 parm에서 초기화되는 개체를 생성합니다. param() 멤버 함수를 호출하여 기존 분포의 현재 매개 변수를 가져와 설정할 수 있습니다.

fisher_f_distribution::param_type

분포의 매개 변수를 저장합니다.

struct param_type {
   typedef fisher_f_distribution<result_type> distribution_type;
   param_type(result_type m = 1.0, result_type n = 1.0);
   result_type m() const;
   result_type n() const;

   bool operator==(const param_type& right) const;
   bool operator!=(const param_type& right) const;
   };

매개 변수

m
m 분포 매개 변수입니다.

n
n 분포 매개 변수입니다.

right
이 매개 변수와 비교할 param_type 개체입니다.

설명

전제 조건: 0.0 < m0.0 < n

이 구조를 인스턴스화 시에는 분포의 클래스 생성자로, 기존 분포의 저장된 매개 변수를 설정하기 위해서는 param() 멤버 함수로, 저장된 매개 변수 대신 사용하기 위해서는 operator()로 전달할 수 있습니다.

참고 항목

<random>