Microsoft는 Azure Open Datasets를 “있는 그대로” 제공합니다. Microsoft는 귀하의 데이터 세트 사용과 관련하여 어떠한 명시적이거나 묵시적인 보증, 보장 또는 조건을 제공하지 않습니다. 귀하가 거주하는 지역의 법규가 허용하는 범위 내에서 Microsoft는 귀하의 데이터 세트 사용으로 인해 발생하는 일체의 직접적, 결과적, 특별, 간접적, 부수적 또는 징벌적 손해 또는 손실을 비롯한 모든 손해 또는 손실에 대한 모든 책임을 부인합니다.
이 데이터 세트는 Microsoft가 원본 데이터를 받은 원래 사용 약관에 따라 제공됩니다. 데이터 세트에는 Microsoft가 제공한 데이터가 포함될 수 있습니다.
열
이름
데이터 형식
고유한
값(샘플)
나이
bigint
58
53 60
BMI
double
163
24.1 23.5
BP
double
100
93.0 83.0
S1
bigint
141
162 184
S2
double
302
125.8 114.8
S3
double
63
46.0 38.0
S4
double
66
3.0 4.0
S5
double
184
4.4427 4.3041
S6
bigint
56
92 96
SEX
bigint
2
1 2
Y
bigint
214
72 200
미리 보기를
나이
SEX
BMI
BP
S1
S2
S3
S4
S5
S6
Y
59
2
32.1
101
157
93.2
38
4
4.8598
87
151
48
1
21.6
87
183
103.2
70
3
3.8918
69
75
72
2
30.5
93
156
93.6
41
4
4.6728
85
141
24
1
25.3
84
198
131.4
40
5
4.8903
89
206
50
1
23
101
192
125.4
52
4
4.2905
80
135
23
1
22.6
89
139
64.8
61
2
4.1897
68
97
36
2
22
90
160
99.6
50
3
3.9512
82
138
66
2
26.2
114
255
185
56
4.55
4.2485
92
63
60
2
32.1
83
179
119.4
42
4
4.4773
94
110
29
1
30
85
180
93.4
43
4
5.3845
88
310
데이터 액세스
다음 코드 샘플을 사용하여 Azure Notebooks, Azure Databricks 또는 Azure Synapse에서 이 데이터 세트에 액세스합니다.
# This is a package in preview.
from azureml.opendatasets import Diabetes
diabetes = Diabetes.get_tabular_dataset()
diabetes_df = diabetes.to_pandas_dataframe()
diabetes_df.info()
# Pip install packages
import os, sys
!{sys.executable} -m pip install azure-storage-blob
!{sys.executable} -m pip install pyarrow
!{sys.executable} -m pip install pandas
# Azure storage access info
azure_storage_account_name = "azureopendatastorage"
azure_storage_sas_token = r""
container_name = "mlsamples"
folder_name = "diabetes"
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
# This is a package in preview.
from azureml.opendatasets import Diabetes
diabetes = Diabetes.get_tabular_dataset()
diabetes_df = diabetes.to_spark_dataframe()
display(diabetes_df.limit(5))
이 플랫폼/패키지 조합에는 샘플을 사용할 수 없습니다.
# Azure storage access info
blob_account_name = "azureopendatastorage"
blob_container_name = "mlsamples"
blob_relative_path = "diabetes"
blob_sas_token = r""
# Allow SPARK to read from Blob remotely
wasbs_path = 'wasbs://%s@%s.blob.core.windows.net/%s' % (blob_container_name, blob_account_name, blob_relative_path)
spark.conf.set(
'fs.azure.sas.%s.%s.blob.core.windows.net' % (blob_container_name, blob_account_name),
blob_sas_token)
print('Remote blob path: ' + wasbs_path)
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))