ML용 Databricks Runtime 9.0(EoS)
참고 항목
이 Databricks Runtime 버전에 대한 지원이 종료되었습니다. 지원 종료 날짜는 지원 종료 기록을 참조하세요. 지원되는 모든 Databricks Runtime 버전은 Databricks Runtime 릴리스 정보 버전 및 호환성을 참조하세요.
Databricks는 2021년 8월에 이 버전을 릴리스했습니다.
Machine Learning용 Databricks Runtime 9.0은 Databricks Runtime 9.0(EoS)을 기반으로 즉시 사용 가능한 기계 학습 및 데이터 과학 환경을 제공합니다. Databricks Runtime ML에는 TensorFlow, PyTorch 및 XGBoost를 포함하여 널리 사용되는 많은 기계 학습 라이브러리가 포함되어 있습니다. 또한 Horovod를 사용하여 분산 딥 러닝 학습을 지원합니다.
Databricks Runtime ML 클러스터 만들기 지침을 포함한 자세한 내용은 Databricks에서의 AI 및 기계 학습을 참조하세요.
수정 사항
이 릴리스 정보의 이전 버전에서는 Databricks Runtime 9.0 ML GPU에서 Ganglia를 사용한 클러스터 GPU 메트릭 모니터링에 대한 지원이 사용하지 않도록 설정되었다고 명시했습니다. 이는 Databricks Runtime 9.0 ML 베타에 해당했지만 Databricks Runtime 9.0 ML GA에서 문제가 수정되었습니다. 문이 제거되었습니다.
새로운 기능 및 향상 기능
Databricks Runtime 9.0 ML은 Databricks Runtime 9.0을 기반으로 빌드되었습니다. Apache Spark MLlib 및 SparkR을 포함하여 Databricks Runtime 9.0의 새로운 기능에 대한 자세한 내용은 Databricks Runtime 9.0(EoS) 릴리스 정보를 참조하세요.
Databricks 자동 로깅(공개 미리 보기)
Databricks 자동 로깅은 이제 일부 지역에서 Machine Learning용 Databricks Runtime 9.0에 사용할 수 있습니다. Databricks 자동 로깅은 Azure Databricks에서 기계 학습 교육 세션에 대한 자동 실험 추적을 제공하는 코드 없는 솔루션입니다. Databricks 자동 로깅을 사용하면 널리 사용되는 다양한 기계 학습 라이브러리에서 모델을 학습할 때 모델 매개 변수, 메트릭, 파일 및 계보 정보가 자동으로 캡처됩니다. 학습 세션은 MLflow 추적 실행으로 기록됩니다. 모델 파일도 추적되므로 MLflow 모델 레지스트리에 쉽게 로그하고 MLflow 모델 서비스로 실시간 채점을 위해 배포할 수 있습니다.
Databricks 자동 로깅에 대한 자세한 내용은 Databricks 자동 로깅을 참조하세요.
Databricks 기능 저장소 개선 사항
원본 기능 테이블에서 조인 수를 최소화하여 학습 집합을 만들 때의 성능이 향상되었습니다.
XGBoost와 PySpark의 통합은 이제 분산 학습 및 GPU 클러스터를 지원합니다.
자세한 내용은 Azure Databricks에서 XGBoost 사용을 참조하세요.
Databricks Runtime ML Python 환경의 주요 변경 내용
%conda 명령과 함께 Conda 환경이 제거됩니다. Databricks Runtime 9.0 ML은 pip
및 virtualenv
로 빌드됩니다.
Databricks Container Services와 함께 Conda 기반 환경을 사용하는 사용자 지정 이미지는 계속 지원되지만 Notebook 범위 라이브러리 기능은 제공되지 않습니다. Databricks는 모든 Notebook 범위 라이브러리에 대해 Databricks Container Services 및 %pip
와 함께 virtualenv 기반 환경을 사용할 것을 권장합니다.
Databricks Runtime Python 환경의 주요 변경 내용은 Databricks Runtime 9.0(EoS)을 참조하세요. 설치된 Python 패키지 및 버전의 전체 목록은 Python 라이브러리를 참조하세요.
업그레이드된 Python 패키지
- mlflow 1.18.0 -> 1.19.0
- nltk 3.5 -> 3.6.1
추가된 Python 패키지
- prophet 1.0.1
제거된 Python 패키지
- MKL
- azure-core
- azure-storage-blob
- msrest
- docker
- querystring-parser
- intel-openmp
사용 중단 및 지원되지 않는 기능
- Databricks Runtime 9.0 ML에서 HorovodRunner는
np=0
설정을 지원하지 않습니다. 여기서np
는 Horovod 작업에 사용할 병렬 프로세스 수입니다. - Databricks Runtime 9.0 ML에는 R 그래픽 엔진 버전 14가 포함된 r-base 4.1.0이 포함되어 있습니다. 이는 RStudio Server 버전 1.2.x에서 지원되지 않습니다.
nvprof
는 Databricks Runtime 9.0 ML GPU에서 제거되었습니다.
시스템 환경
Databricks Runtime 9.0 ML의 시스템 환경은 다음과 같이 Databricks Runtime 9.0과 다릅니다.
- DBUtils: Databricks Runtime ML에는 라이브러리 유틸리티(dbutils.library)(레거시)가 포함되어 있지 않습니다.
대신
%pip
명령을 사용합니다. Notebook 범위의 Python 라이브러리를 참조하세요. - GPU 클러스터의 경우 Databricks Runtime ML에는 다음과 같은 NVIDIA GPU 라이브러리가 포함됩니다.
- CUDA 11.0
- cuDNN 8.1.0.77
- NCCL 2.10.3
- TensorRT 7.2.2
라이브러리
다음 섹션에서는 Databricks Runtime 9.0에 포함된 라이브러리와 다른 Databricks Runtime 9.0 ML에 포함된 라이브러리를 나열합니다.
이 구역의 내용:
최상위 계층 라이브러리
Databricks Runtime 9.0 ML에는 다음과 같은 최상위 라이브러리가 포함되어 있습니다.
- GraphFrames
- Horovod 및 HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- Tensorflow
- TensorBoard
Python 라이브러리
Databricks Runtime 9.0 ML은 Python 패키지 관리에 Virtualenv를 사용하며 많은 자주 사용되는 ML 패키지를 포함합니다.
다음 섹션에 지정된 패키지 외에도 Databricks Runtime 9.0 ML에는 다음 패키지도 포함됩니다.
- hyperopt 0.2.5.db2
- sparkdl 2.2.0_db1
- feature_store 0.3.3
- automl 1.1.1
CPU 클러스터의 Python 라이브러리
라이브러리 | 버전 | 라이브러리 | 버전 | 라이브러리 | 버전 |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10(ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bleach | 3.3.0 | boto3 | 1.16.7 |
botocore | 1.19.7 | Bottleneck | 1.3.2 | cachetools | 4.2.2 |
certifi | 2020.12.5 | cffi | 1.14.5 | chardet | 4.0.0 |
에서 | 7.1.2 | cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 |
configparser | 5.0.1 | convertdate | 2.3.2 | 암호화 | 3.4.7 |
cycler | 0.10.0 | Cython | 0.29.23 | databricks-cli | 0.14.3 |
dbus-python | 1.2.16 | decorator | 5.0.6 | defusedxml | 0.7.1 |
dill | 0.3.2 | diskcache | 5.2.1 | distlib | 0.3.2 |
distro-info | 0.23ubuntu1 | entrypoints | 0.3 | ephem | 4.0.0.2 |
facets-overview | 1.0.0 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 1.12 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.7 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.34.1 | gunicorn | 20.0.4 | h5py | 3.1.0 |
hijri-converter | 2.1.3 | 휴일 | 0.10.5.2 | horovod | 0.22.1 |
htmlmin | 0.1.12 | idna | 2.10 | ImageHash | 4.2.1 |
ipykernel | 5.3.4 | ipython | 7.22.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.6.4 | isodate | 0.6.0 | itsdangerous | 1.1.0 |
jedi | 0.17.2 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | joblibspark | 0.3.0 | jsonschema | 3.2.0 |
jupyter-client | 6.1.12 | jupyter-core | 4.7.1 | jupyterlab-pygments | 0.1.2 |
jupyterlab-widgets | 1.0.1 | keras-nightly | 2.5.0.dev2021032900 | Keras-Preprocessing | 1.1.2 |
kiwisolver | 1.3.1 | koalas | 1.8.1 | korean-lunar-calendar | 0.2.1 |
lightgbm | 3.1.1 | llvmlite | 0.36.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 1.1.1 |
matplotlib | 3.4.2 | missingno | 0.5.0 | mistune | 0.8.4 |
mleap | 0.17.0 | mlflow-skinny | 1.19.0 | multimethod | 1.4 |
nbclient | 0.5.3 | nbconvert | 6.0.7 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | networkx | 2.5 | nltk | 3.6.1 |
Notebook | 6.3.0 | numba | 0.53.1 | numpy | 1.19.2 |
oauthlib | 3.1.0 | opt-einsum | 3.3.0 | 패키징 | 20.9 |
pandas | 1.2.4 | pandas-profiling | 3.0.0 | pandocfilters | 1.4.3 |
paramiko | 2.7.2 | parso | 0.7.0 | patsy | 0.5.1 |
petastorm | 0.11.1 | pexpect | 4.8.0 | phik | 0.12.0 |
pickleshare | 0.7.5 | Pillow | 8.2.0 | pip | 21.0.1 |
plotly | 4.14.3 | prometheus-client | 0.10.1 | prompt-toolkit | 3.0.17 |
prophet | 1.0.1 | protobuf | 3.17.2 | psutil | 5.8.0 |
psycopg2 | 2.8.5 | ptyprocess | 0.7.0 | pyarrow | 4.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pycparser | 2.20 |
pydantic | 1.8.2 | Pygments | 2.8.1 | PyGObject | 3.36.0 |
PyMeeus | 0.5.11 | PyNaCl | 1.3.0 | pyodbc | 4.0.30 |
pyparsing | 2.4.7 | pyrsistent | 0.17.3 | pystan | 2.19.1.1 |
python-apt | 2.0.0+ubuntu0.20.4.6 | python-dateutil | 2.8.1 | python-editor | 1.0.4 |
pytz | 2020.5 | PyWavelets | 1.1.1 | PyYAML | 5.4.1 |
pyzmq | 20.0.0 | regex | 2021.4.4 | requests | 2.25.1 |
requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 | retrying | 1.3.3 |
rsa | 4.7.2 | s3transfer | 0.3.7 | scikit-learn | 0.24.1 |
scipy | 1.6.2 | seaborn | 0.11.1 | Send2Trash | 1.5.0 |
setuptools | 52.0.0 | setuptools-git | 1.2 | shap | 0.39.0 |
simplejson | 3.17.2 | 6 | 1.15.0 | slicer | 0.0.7 |
smmap | 3.0.5 | spark-tensorflow-distributor | 0.1.0 | sqlparse | 0.4.1 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulate | 0.8.7 |
tangled-up-in-unicode | 0.1.0 | tensorboard | 2.5.0 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-wit | 1.8.0 | tensorflow-cpu | 2.5.0 | tensorflow-estimator | 2.5.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | testpath | 0.4.4 |
threadpoolctl | 2.1.0 | torch | 1.9.0+cpu | torchvision | 0.10.0+cpu |
tornado | 6.1 | tqdm | 4.59.0 | traitlets | 5.0.5 |
typing-extensions | 3.7.4.3 | ujson | 4.0.2 | unattended-upgrades | 0.1 |
urllib3 | 1.25.11 | virtualenv | 20.4.1 | visions | 0.7.1 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | wheel | 0.36.2 | widgetsnbextension | 3.5.1 |
wrapt | 1.12.1 | xgboost | 1.4.2 |
GPU 클러스터의 Python 라이브러리
라이브러리 | 버전 | 라이브러리 | 버전 | 라이브러리 | 버전 |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10(ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1.10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bleach | 3.3.0 | boto3 | 1.16.7 |
botocore | 1.19.7 | Bottleneck | 1.3.2 | cachetools | 4.2.2 |
certifi | 2020.12.5 | cffi | 1.14.5 | chardet | 4.0.0 |
에서 | 7.1.2 | cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 |
configparser | 5.0.1 | convertdate | 2.3.2 | 암호화 | 3.4.7 |
cycler | 0.10.0 | Cython | 0.29.23 | databricks-cli | 0.14.3 |
dbus-python | 1.2.16 | decorator | 5.0.6 | defusedxml | 0.7.1 |
dill | 0.3.2 | diskcache | 5.2.1 | distlib | 0.3.2 |
distro-info | 0.23ubuntu1 | entrypoints | 0.3 | ephem | 4.0.0.2 |
facets-overview | 1.0.0 | filelock | 3.0.12 | Flask | 1.1.2 |
flatbuffers | 1.12 | fsspec | 0.9.0 | future | 0.18.2 |
gast | 0.4.0 | gitdb | 4.0.7 | GitPython | 3.1.12 |
google-auth | 1.22.1 | google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 |
grpcio | 1.34.1 | gunicorn | 20.0.4 | h5py | 3.1.0 |
hijri-converter | 2.1.3 | 휴일 | 0.10.5.2 | horovod | 0.22.1 |
htmlmin | 0.1.12 | idna | 2.10 | ImageHash | 4.2.1 |
ipykernel | 5.3.4 | ipython | 7.22.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.6.4 | isodate | 0.6.0 | itsdangerous | 1.1.0 |
jedi | 0.17.2 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | joblibspark | 0.3.0 | jsonschema | 3.2.0 |
jupyter-client | 6.1.12 | jupyter-core | 4.7.1 | jupyterlab-pygments | 0.1.2 |
jupyterlab-widgets | 1.0.1 | keras-nightly | 2.5.0.dev2021032900 | Keras-Preprocessing | 1.1.2 |
kiwisolver | 1.3.1 | koalas | 1.8.1 | korean-lunar-calendar | 0.2.1 |
lightgbm | 3.1.1 | llvmlite | 0.36.0 | LunarCalendar | 0.0.9 |
Mako | 1.1.3 | Markdown | 3.3.3 | MarkupSafe | 1.1.1 |
matplotlib | 3.4.2 | missingno | 0.5.0 | mistune | 0.8.4 |
mleap | 0.17.0 | mlflow-skinny | 1.19.0 | multimethod | 1.4 |
nbclient | 0.5.3 | nbconvert | 6.0.7 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | networkx | 2.5 | nltk | 3.6.1 |
Notebook | 6.3.0 | numba | 0.53.1 | numpy | 1.19.2 |
oauthlib | 3.1.0 | opt-einsum | 3.3.0 | 패키징 | 20.9 |
pandas | 1.2.4 | pandas-profiling | 3.0.0 | pandocfilters | 1.4.3 |
paramiko | 2.7.2 | parso | 0.7.0 | patsy | 0.5.1 |
petastorm | 0.11.1 | pexpect | 4.8.0 | phik | 0.12.0 |
pickleshare | 0.7.5 | Pillow | 8.2.0 | pip | 21.0.1 |
plotly | 4.14.3 | prometheus-client | 0.11.0 | prompt-toolkit | 3.0.17 |
prophet | 1.0.1 | protobuf | 3.17.2 | psutil | 5.8.0 |
psycopg2 | 2.8.5 | ptyprocess | 0.7.0 | pyarrow | 4.0.0 |
pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 | pycparser | 2.20 |
pydantic | 1.8.2 | Pygments | 2.8.1 | PyGObject | 3.36.0 |
PyMeeus | 0.5.11 | PyNaCl | 1.3.0 | pyodbc | 4.0.30 |
pyparsing | 2.4.7 | pyrsistent | 0.17.3 | pystan | 2.19.1.1 |
python-apt | 2.0.0+ubuntu0.20.4.6 | python-dateutil | 2.8.1 | python-editor | 1.0.4 |
pytz | 2020.5 | PyWavelets | 1.1.1 | PyYAML | 5.4.1 |
pyzmq | 20.0.0 | regex | 2021.4.4 | requests | 2.25.1 |
requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 | retrying | 1.3.3 |
rsa | 4.7.2 | s3transfer | 0.3.7 | scikit-learn | 0.24.1 |
scipy | 1.6.2 | seaborn | 0.11.1 | Send2Trash | 1.5.0 |
setuptools | 52.0.0 | setuptools-git | 1.2 | shap | 0.39.0 |
simplejson | 3.17.2 | 6 | 1.15.0 | slicer | 0.0.7 |
smmap | 3.0.5 | spark-tensorflow-distributor | 0.1.0 | sqlparse | 0.4.1 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulate | 0.8.7 |
tangled-up-in-unicode | 0.1.0 | tensorboard | 2.5.0 | tensorboard-data-server | 0.6.1 |
tensorboard-plugin-wit | 1.8.0 | tensorflow | 2.5.0 | tensorflow-estimator | 2.5.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | testpath | 0.4.4 |
threadpoolctl | 2.1.0 | torch | 1.9.0+cu111 | torchvision | 0.10.0+cu111 |
tornado | 6.1 | tqdm | 4.59.0 | traitlets | 5.0.5 |
typing-extensions | 3.7.4.3 | ujson | 4.0.2 | unattended-upgrades | 0.1 |
urllib3 | 1.25.11 | virtualenv | 20.4.1 | visions | 0.7.1 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | wheel | 0.36.2 | widgetsnbextension | 3.5.1 |
wrapt | 1.12.1 | xgboost | 1.4.2 |
Python 모듈이 포함된 Spark 패키지
Spark 패키지 | Python 모듈 | 버전 |
---|---|---|
graphframes | graphframes | 0.8.1-db3-spark3.1 |
R 라이브러리
R 라이브러리는 Databricks Runtime 9.0의 R 라이브러리와 동일합니다.
Java 및 Scala 라이브러리(Scala 2.12 클러스터)
Databricks Runtime 9.0의 Java 및 Scala 라이브러리 외에도 Databricks Runtime 9.0 ML에는 다음 JAR이 포함되어 있습니다.
CPU 클러스터
그룹 ID | 아티팩트 ID | 버전 |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.0-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.4.1 |
ml.dmlc | xgboost4j_2.12 | 1.4.1 |
org.graphframes | graphframes_2.12 | 0.8.1-db2-spark3.1 |
org.mlflow | mlflow-client | 1.19.0 |
org.mlflow | mlflow-spark | 1.19.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
GPU 클러스터
그룹 ID | 아티팩트 ID | 버전 |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.0-4882dc3 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.4.1 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.4.1 |
org.graphframes | graphframes_2.12 | 0.8.1-db2-spark3.1 |
org.mlflow | mlflow-client | 1.19.0 |
org.mlflow | mlflow-spark | 1.19.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |