JavaScript를 사용하여 Azure Cosmos DB for MongoDB에서 데이터 쿼리
적용 대상: MongoDB
쿼리 및 집계 파이프라인을 사용하여 컬렉션에서 문서를 찾고 조작합니다.
참고 항목
예제 코드 조각은 GitHub에서 JavaScript 프로젝트로 사용할 수 있습니다.
API for MongoDB 참조 설명서 | MongoDB 패키지(npm)
문서에 대한 쿼리
문서를 찾으려면 쿼리를 사용하여 문서를 찾은 방법을 정의합니다.
// assume doc exists
const product = {
_id: ObjectId("62b1f43a9446918500c875c5"),
category: "gear-surf-surfboards",
name: "Yamba Surfboard 7",
quantity: 12,
sale: false
};
// For unsharded database: use id
const query1 = { _id: ObjectId(product._id) };
const foundById = await client.db("adventureworks").collection('products').findOne(query1);
console.log(`Read doc:\t\n${Object.keys(foundById).map(key => `\t${key}: ${foundById[key]}\n`)}`);
// For sharded database: point read doc from collection using the id and partitionKey
const query2 = { _id: ObjectId(product._id), category: product.category };
const foundByIdAndPartitionKey = await client.db("adventureworks").collection('products').findOne(query2);
console.log(`Read doc 2:\t\n${Object.keys(foundByIdAndPartitionKey).map(key => `\t${key}: ${foundByIdAndPartitionKey[key]}\n`)}`);
// Find one by unique doc property value
const query3 = { name: product.name};
const foundByUniqueValue = await client.db("adventureworks").collection('products').findOne(query3);
console.log(`Read doc 3:\t\n${Object.keys(foundByUniqueValue).map(key => `\t${key}: ${foundByUniqueValue[key]}\n`)}`);
// Find one (with many that match query) still returns one doc
const query4 = { category: product.category };
const foundByNonUniqueValue = await client.db("adventureworks").collection('products').findOne(query4);
console.log(`Read doc 4:\t\n${Object.keys(foundByNonUniqueValue).map(key => `\t${key}: ${foundByNonUniqueValue[key]}\n`)}`);
// Find all that match query
const query5 = { category: product.category };
const foundAll = await client.db("adventureworks").collection('products').find(query5).sort({_id: 1}).toArray();
console.log(`Matching all in product category:\n${foundAll.map(doc => `\t${doc._id}: ${doc.name}\n`)}`);
// Find all in collection with empty query {}
const foundAll2 = await client.db("adventureworks").collection('products').find({}).toArray();
console.log(`All docs:\n${foundAll2.map(doc => `\t${doc._id}: ${doc.name}\n`)}`);
// Pagination - next 5 docs
// sort by name require an index on name
const nextFiveDocs = await client.db("adventureworks").collection('products').find({}).sort({name: 1}).skip(5).limit(5).toArray();
console.log(`All docs:\n${foundAll2.map(doc => `\t${doc._id}: ${doc.name}\n`)}`);
위의 코드 조각은 다음 예제 콘솔 출력을 표시합니다.
Read doc:
_id: 62b1f43a9446918500c875c5
, name: Yamba Surfboard-13
, category: gear-surf-surfboards
, quantity: 20
, sale: false
, discontinued: true
Read doc 2:
_id: 62b1f43a9446918500c875c5
, name: Yamba Surfboard-13
, category: gear-surf-surfboards
, quantity: 20
, sale: false
, discontinued: true
Read doc 3:
_id: 62b23a371a09ed6441e5ee31
, category: gear-surf-surfboards
, name: Yamba Surfboard 7
, quantity: 5
, sale: true
, discontinued: true
Read doc 4:
_id: 62b1f43a9446918500c875c5
, name: Yamba Surfboard-13
, category: gear-surf-surfboards
, quantity: 20
, sale: false
, discontinued: true
Matching all in product category:
62b1f43a9446918500c875c5: Yamba Surfboard-13
, 62b1f4670c7af8c2942b7c10: Yamba Surfboard-3
, 62b1f46fa6546d2afb5715ac: Yamba Surfboard-90
, 62b1f474e4b43498c05d295b: Yamba Surfboard-9
All docs:
62b1f43a9446918500c875c5: Yamba Surfboard-13
, 62b1f4670c7af8c2942b7c10: Yamba Surfboard-3
, 62b1f46fa6546d2afb5715ac: Yamba Surfboard-90
, 62b1f474e4b43498c05d295b: Yamba Surfboard-9
, 62b1f47896aa8cfa280edf2d: Yamba Surfboard-55
, 62b1f47dacbf04e86c8abf25: Yamba Surfboard-11
, 62b1f4804ee53f4c5c44778c: Yamba Surfboard-97
, 62b1f492ff69395b30a03169: Yamba Surfboard-93
, 62b23a371a09ed6441e5ee30: Yamba Surfboard 3
, 62b23a371a09ed6441e5ee31: Yamba Surfboard 7
All docs:
62b1f43a9446918500c875c5: Yamba Surfboard-13
, 62b1f4670c7af8c2942b7c10: Yamba Surfboard-3
, 62b1f46fa6546d2afb5715ac: Yamba Surfboard-90
, 62b1f474e4b43498c05d295b: Yamba Surfboard-9
, 62b1f47896aa8cfa280edf2d: Yamba Surfboard-55
, 62b1f47dacbf04e86c8abf25: Yamba Surfboard-11
, 62b1f4804ee53f4c5c44778c: Yamba Surfboard-97
, 62b1f492ff69395b30a03169: Yamba Surfboard-93
, 62b23a371a09ed6441e5ee30: Yamba Surfboard 3
, 62b23a371a09ed6441e5ee31: Yamba Surfboard 7
done
집계 파이프라인
집계 파이프라인은 클라이언트에서 이러한 작업을 수행하는 대신 Azure Cosmos DB 서버에서 비용이 많이 드는 쿼리 계산, 변환 및 기타 처리를 격리하는 데 유용합니다.
특정 집계 파이프라인 지원은 다음을 참조하세요.
집계 파이프라인 구문
파이프라인은 일련의 스테이지를 JSON 개체로 갖는 배열입니다.
const pipeline = [
stage1,
stage2
]
파이프라인 스테이지 구문
스테이지는 다음과 같이 적용된 작업 및 데이터를 정의합니다.
- $match - 문서 찾기
- $addFields - 일반적으로 이전 스테이지에서 커서에 필드 추가
- $limit - 커서에 반환하는 결과 수 제한
- $project - 새 필드 또는 기존 필드를 따라 전달하며 계산 필드일 수 있음
- $group - 파이프라인의 필드 또는 필드별로 결과 그룹화
- $sort - 결과 정렬
// reduce collection to relative documents
const matchStage = {
'$match': {
'categoryName': { $regex: 'Bikes' },
}
}
// sort documents on field `name`
const sortStage = {
'$sort': {
"name": 1
}
},
반복 가능한 커서를 가져오기 위해 파이프라인 집계
파이프라인은 반복 가능한 커서를 생성하기 위해 집계됩니다.
const db = 'adventureworks';
const collection = 'products';
const aggCursor = client.db(databaseName).collection(collectionName).aggregate(pipeline);
await aggCursor.forEach(product => {
console.log(JSON.stringify(product));
});
JavaScript에서 집계 파이프라인 사용
파이프라인을 사용하여 클라이언트로 돌아가기 전에 서버에서 데이터 처리를 유지합니다.
제품 데이터 예제
아래 집계에서는 다음과 같은 모양의 데이터와 함께 샘플 제품 컬렉션을 사용합니다.
[
{
"_id": "08225A9E-F2B3-4FA3-AB08-8C70ADD6C3C2",
"categoryId": "75BF1ACB-168D-469C-9AA3-1FD26BB4EA4C",
"categoryName": "Bikes, Touring Bikes",
"sku": "BK-T79U-50",
"name": "Touring-1000 Blue, 50",
"description": "The product called \"Touring-1000 Blue, 50\"",
"price": 2384.0700000000002,
"tags": [
]
},
{
"_id": "0F124781-C991-48A9-ACF2-249771D44029",
"categoryId": "56400CF3-446D-4C3F-B9B2-68286DA3BB99",
"categoryName": "Bikes, Mountain Bikes",
"sku": "BK-M68B-42",
"name": "Mountain-200 Black, 42",
"description": "The product called \"Mountain-200 Black, 42\"",
"price": 2294.9899999999998,
"tags": [
]
},
{
"_id": "3FE1A99E-DE14-4D11-B635-F5D39258A0B9",
"categoryId": "26C74104-40BC-4541-8EF5-9892F7F03D72",
"categoryName": "Components, Saddles",
"sku": "SE-T924",
"name": "HL Touring Seat/Saddle",
"description": "The product called \"HL Touring Seat/Saddle\"",
"price": 52.640000000000001,
"tags": [
]
},
]
예제 1: 제품 하위 범주, 제품 수 및 평균 가격
다음 샘플 코드를 사용하여 각 제품 하위 범주의 평균 가격을 보고합니다.
// Goal: Find the average price of each product subcategory with
// the number of products in that subcategory.
// Sort by average price descending.
// Read .env file and set environment variables
require('dotenv').config();
// Use official mongodb driver to connect to the server
const { MongoClient } = require('mongodb');
// New instance of MongoClient with connection string
// for Cosmos DB
const url = process.env.COSMOS_CONNECTION_STRING;
const client = new MongoClient(url);
async function main() {
try {
// Use connect method to connect to the server
await client.connect();
// Group all products by category
// Find average price of each category
// Count # of products in each category
const groupByCategory = {
'$group': {
'_id': '$categoryName',
'averagePrice': {
'$avg': '$price'
},
'countOfProducts': {
'$sum': 1
}
},
};
// Round price to 2 decimal places
// Don't return _id
// Rename category name help in `_id` to `categoryName`
// Round prices to 2 decimal places
// Rename property for countOfProducts to nProducts
const additionalTransformations = {
'$project': {
'_id': 0,
'category': '$_id',
'nProducts':'$countOfProducts',
'averagePrice': { '$round': ['$averagePrice', 2] }
}
};
// Sort by average price descending
const sort = { '$sort': { '$averagePrice': -1 } };
// stages execute in order from top to bottom
const pipeline = [
groupByCategory,
additionalTransformations,
sort
];
const db = 'adventureworks';
const collection = 'products';
// Get iterable cursor
const aggCursor = client.db(db).collection(collection).aggregate(pipeline);
// Display each item in cursor
await aggCursor.forEach(product => {
console.log(JSON.stringify(product));
});
return 'done';
} catch (err) {
console.log(JSON.stringify(err));
}
}
main()
.then(console.log)
.catch(console.error)
.finally(() => {
// Close the db and its underlying connections
client.close()
});
// Results:
// {"averagePrice":51.99,"category":"Clothing, Jerseys","nProducts":8}
// {"averagePrice":1683.36,"category":"Bikes, Mountain Bikes","nProducts":32}
// {"averagePrice":1597.45,"category":"Bikes, Road Bikes","nProducts":43}
// {"averagePrice":20.24,"category":"Components, Chains","nProducts":1}
// {"averagePrice":25,"category":"Accessories, Locks","nProducts":1}
// {"averagePrice":631.42,"category":"Components, Touring Frames","nProducts":18}
// {"averagePrice":9.25,"category":"Clothing, Socks","nProducts":4}
// {"averagePrice":125,"category":"Accessories, Panniers","nProducts":1}
// ... remaining fields ...
예제 2: 가격대별 자전거 유형
다음 샘플 코드를 사용하여 Bikes
하위 범주에 대해 보고합니다.
// Goal: Find the price range for the different bike subcategories.
// Read .env file and set environment variables
require('dotenv').config();
// Use official mongodb driver to connect to the server
const { MongoClient } = require('mongodb');
// New instance of MongoClient with connection string
// for Cosmos DB
const url = process.env.COSMOS_CONNECTION_STRING;
const client = new MongoClient(url);
async function main() {
try {
// Use connect method to connect to the server
await client.connect();
const categoryName = 'Bikes';
const findAllBikes = {
'$match': {
'categoryName': { $regex: categoryName},
}
};
// Convert 'Bikes, Touring Bikes' to ['Bikes', 'Touring Bikes']
const splitStringIntoCsvArray = {
$addFields: {
'categories': { '$split': ['$categoryName', ', '] }
}
};
// Remove first element from array
// Converts ['Bikes', 'Touring Bikes'] to ['Touring Bikes']
const removeFirstElement = {
$addFields: {
'subcategory': { '$slice': ['$categories', 1, { $subtract: [{ $size: '$categories' }, 1] }] }
}
}
// Group items by book subcategory, and find min, avg, and max price
const groupBySubcategory = {
'$group': {
'_id': '$subcategory',
'maxPrice': {
'$max': '$price'
},
'averagePrice': {
'$avg': '$price'
},
'minPrice': {
'$min': '$price'
},
'countOfProducts': {
'$sum': 1
}
},
};
// Miscellaneous transformations
// Don't return _id
// Convert subcategory from array of 1 item to string in `name`
// Round prices to 2 decimal places
// Rename property for countOfProducts to nProducts
const additionalTransformations = {
'$project': {
'_id': 0,
'name': { '$arrayElemAt': ['$_id', 0]},
'nProducts': '$countOfProducts',
'min': { '$round': ['$minPrice', 2] },
'avg': { '$round': ['$averagePrice', 2] },
'max': { '$round': ['$maxPrice', 2] }
}
};
// Sort by subcategory
const sortBySubcategory = { '$sort':
{ 'name': 1 }
};
// stages execute in order from top to bottom
const pipeline = [
findAllBikes,
splitStringIntoCsvArray,
removeFirstElement,
groupBySubcategory,
additionalTransformations,
sortBySubcategory
];
const db = 'adventureworks';
const collection = 'products';
// Get iterable cursor
const aggCursor = client.db(db).collection(collection).aggregate(pipeline);
// Display each item in cursor
await aggCursor.forEach(product => {
console.log(JSON.stringify(product));
});
return 'done';
} catch (err) {
console.log(JSON.stringify(err));
}
}
main()
.then(console.log)
.catch(console.error)
.finally(() => {
// Close the db and its underlying connections
client.close();
});
// Results:
// {'name':'Mountain Bikes','nProducts':32,'min':539.99,'avg':1683.37,'max':3399.99}
// {'name':'Road Bikes','nProducts':43,'min':539.99,'avg':1597.45,'max':3578.27}
// {'name':'Touring Bikes','nProducts':22,'min':742.35,'avg':1425.25,'max':2384.07}