次の方法で共有


rxFeaturize: RevoScaleR データ ソースのデータ変換

入力データ セットのデータを出力データ セットに変換します。

使用方法

  rxFeaturize(data, outData = NULL, overwrite = FALSE, dataThreads = NULL,
    randomSeed = NULL, maxSlots = 5000, mlTransforms = NULL,
    mlTransformVars = NULL, rowSelection = NULL, transforms = NULL,
    transformObjects = NULL, transformFunc = NULL, transformVars = NULL,
    transformPackages = NULL, transformEnvir = NULL,
    blocksPerRead = rxGetOption("blocksPerRead"),
    reportProgress = rxGetOption("reportProgress"), verbose = 1,
    computeContext = rxGetOption("computeContext"), ...)

引数

data

RevoScaleR データ ソース オブジェクト、データ フレーム、または .xdf ファイルへのパス。

outData

出力テキストまたは xdf ファイル名、または変換されたデータを格納する書き込み機能がある RxDataSourceNULL の場合、データ フレームが返されます。 既定値は NULL です。

overwrite

TRUE にすると既存の outData が上書きされます。FALSE にすると、既存の outData は上書きされません。 既定値は /codeFALSE です。

dataThreads

データ パイプラインで必要な並列処理の次数を指定する整数。 NULL の場合、使用されるスレッドの数は内部的に決定されます。 既定値は NULL です。

randomSeed

ランダム シードを指定します。 既定値は NULL です。

maxSlots

ベクトル値列に対して返される最大スロット数 (すべて返すには <=0 とします)。

mlTransforms

トレーニング前にデータに対して実行する MicrosoftML 変換のリストを指定します。変換を実行しない場合は NULL を指定します。 サポートされている変換については、featurizeTextcategoricalcategoricalHash に関する記事を参照してください。 これらの変換は、指定された R 変換の後に実行されます。 既定値は NULL です。

mlTransformVars

mlTransforms で使用する変数名の文字ベクトルを指定します。変数を使用しない場合は NULL を指定します。 既定値は NULL です。

rowSelection

モデルで使用されるデータ セットの行 (観測値) を、データ セットの論理変数の名前 (引用符で囲む) またはデータ セット内の変数を使用する論理式で指定します。 たとえば、rowSelection = "old" の場合は、変数 old の値が TRUE である観測値のみを使用します。 rowSelection = (age > 20) & (age < 65) & (log(income) > 10) の場合は、変数 age の値が 20 から 65 の間で、変数 incomelog の値が 10 を超える観測値のみを使用します。 行の選択は、データ変換を処理した後に実行されます (引数 transforms または transformFunc を参照してください)。 すべての式と同様に、rowSelection は、expression 関数を使用して関数呼び出しの外部で定義できます。

transforms

変数変換の最初のラウンドを表す、list(name = expression, ``...) という形式の式。 すべての式と同様に、transforms (または rowSelection) は、expression 関数を使用して関数呼び出しの外部で定義できます。 既定値は NULL です。

transformObjects

transformstransformsFuncrowSelection で参照できるオブジェクトを含む名前付きリスト。 既定値は NULL です。

transformFunc

変数変換関数。 詳細については、「rxTransform」を参照してください。 既定値は NULL です。

transformVars

変換関数に必要な入力データ セット変数の文字ベクトル。 詳細については、「rxTransform」を参照してください。 既定値は NULL です。

transformPackages

変数変換関数で使用するために事前に読み込まれる追加の R パッケージ (rxGetOption("transformPackages") で指定されているもの以外) を指定する文字ベクトル。 たとえば、transforms および transformFunc 引数を使用して RevoScaleR 関数で明示的に定義されているものや、formula または rowSelection 引数を使用して暗黙的に定義されているものなどです。 引数 transformPackages には NULL を指定することもできます。これは、rxGetOption("transformPackages") 以外のパッケージを事前に読み込まないことを示します。 既定値は NULL です。

transformEnvir

内部で開発され、変数データ変換に使用される、すべての環境の親として機能するユーザー定義環境。 transformEnvir = NULL の場合は、baseenv() を親とする新しい "ハッシュ" 環境が代わりに使用されます。既定値は NULL です。

blocksPerRead

データ ソースから読み取るデータのチャンクごとに、読み取るブロックの数を指定します。

reportProgress

行処理の進行状況に関するレポートのレベルを指定する整数値。

  • 0: 進行状況はレポートされません。
  • 1: 処理された行の数が出力され、更新されます。
  • 2: 処理された行とタイミングがレポートされます。
  • 3: 処理された行とすべてのタイミングがレポートされます。
    既定値は 1 です。

verbose

必要な出力の量を指定する整数値。 0 の場合、計算中に詳細は出力されません。 1 から 4 の整数値を指定すると、情報の量が増えます。 既定値は 1 です。

computeContext

有効な RxComputeContext で指定されている、計算が実行されるコンテキストを設定します。 現在は、ローカルと RxInSqlServer コンピューティング コンテキストがサポートされています。

...

Microsoft コンピューティング エンジンに直接渡される追加の引数。

データ フレームまたは作成された出力データを表す RxDataSource オブジェクト。

作成者

Microsoft Corporation Microsoft Technical Support

こちらもご覧ください

rxDataStep、rxImport、rxTransform.

使用例


 # rxFeaturize basically allows you to access data from the MicrosoftML transforms
 # In this example we'll look at getting the output of the categorical transform

 # Create the data
 categoricalData <- data.frame(
   placesVisited = c(
     "London",
     "Brunei",
     "London",
     "Paris",
     "Seria"
   ),
   stringsAsFactors = FALSE
 )

 # Invoke the categorical transform
 categorized <- rxFeaturize(
   data = categoricalData,
   mlTransforms = list(categorical(vars = c(xDataCat = "placesVisited")))
 )

 # Now let's look at the data
 categorized