損失関数: 分類と回帰の損失関数
分類および回帰の損失関数です。
使用方法
expLoss(beta = 1, ...)
hingeLoss(margin = 1, ...)
logLoss(...)
smoothHingeLoss(smoothingConst = 1, ...)
poissonLoss(...)
squaredLoss(...)
引数
beta
ベータ (拡大) の数値を指定します。 既定値は 1 です。
margin
マージンの数値を指定します。 既定値は 1 です。
smoothingConst
平滑化定数の数値を指定します。 既定値は 1 です。
...
非表示の引数。
詳細
損失関数では、機械学習アルゴリズムの予測と監視された出力の不一致が測定され、間違っていることのコストが示されます。
サポートされている分類の損失関数は次のとおりです。
logLoss
expLoss
hingeLoss
smoothHingeLoss
サポートされている回帰の損失関数は次のとおりです。
poissonLoss
squaredLoss
.
値
損失関数を定義する文字列。
作成者
Microsoft Corporation Microsoft Technical Support
こちらもご覧ください
使用例
train <- function(lossFunction) {
result <- rxFastLinear(isCase ~ age + parity + education + spontaneous + induced,
transforms = list(isCase = case == 1), lossFunction = lossFunction,
data = infert,
type = "binary")
coef(result)[["age"]]
}
age <- list()
age$LogLoss <- train(logLoss())
age$LogLossHinge <- train(hingeLoss())
age$LogLossSmoothHinge <- train(smoothHingeLoss())
age