次の方法で共有


TensorFlowDistribution Class

TensorFlow distribution configuration.

Inheritance
azure.ai.ml.entities._job.distribution.DistributionConfiguration
TensorFlowDistribution

Constructor

TensorFlowDistribution(*, parameter_server_count: int | None = 0, worker_count: int | None = None, **kwargs: Any)

Keyword-Only Parameters

Name Description
parameter_server_count

The number of parameter server tasks. Defaults to 0.

worker_count

The number of workers. Defaults to the instance count.

Examples

Configuring a CommandComponent with a TensorFlowDistribution.


   from azure.ai.ml import TensorFlowDistribution
   from azure.ai.ml.entities import CommandComponent

   component = CommandComponent(
       name="microsoftsamples_tf",
       description="This is the TF command component",
       inputs={
           "component_in_number": {"description": "A number", "type": "number", "default": 10.99},
           "component_in_path": {"description": "A path", "type": "uri_folder"},
       },
       outputs={"component_out_path": {"type": "uri_folder"}},
       command="echo Hello World & echo ${{inputs.component_in_number}} & echo ${{inputs.component_in_path}} "
       "& echo ${{outputs.component_out_path}}",
       environment="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu:33",
       distribution=TensorFlowDistribution(
           parameter_server_count=1,
           worker_count=2,
       ),
       instance_count=2,
   )

Variables

Name Description
parameter_server_count
int

Number of parameter server tasks.

worker_count
int

Number of workers. If not specified, will default to the instance count.

type
str

Specifies the type of distribution. Set automatically to "tensorflow" for this class.