ImageModelSettingsObjectDetection クラス
AutoML 画像オブジェクト検出タスクのモデル設定。
- 継承
-
azure.ai.ml.entities._job.automl.image.image_model_settings.ImageModelDistributionSettingsImageModelSettingsObjectDetection
コンストラクター
ImageModelSettingsObjectDetection(*, advanced_settings: str | None = None, ams_gradient: bool | None = None, beta1: float | None = None, beta2: float | None = None, checkpoint_frequency: int | None = None, checkpoint_run_id: str | None = None, distributed: bool | None = None, early_stopping: bool | None = None, early_stopping_delay: int | None = None, early_stopping_patience: int | None = None, enable_onnx_normalization: bool | None = None, evaluation_frequency: int | None = None, gradient_accumulation_step: int | None = None, layers_to_freeze: int | None = None, learning_rate: float | None = None, learning_rate_scheduler: LearningRateScheduler | None = None, model_name: str | None = None, momentum: float | None = None, nesterov: bool | None = None, number_of_epochs: int | None = None, number_of_workers: int | None = None, optimizer: StochasticOptimizer | None = None, random_seed: int | None = None, step_lr_gamma: float | None = None, step_lr_step_size: int | None = None, training_batch_size: int | None = None, validation_batch_size: int | None = None, warmup_cosine_lr_cycles: float | None = None, warmup_cosine_lr_warmup_epochs: int | None = None, weight_decay: float | None = None, box_detections_per_image: int | None = None, box_score_threshold: float | None = None, image_size: int | None = None, max_size: int | None = None, min_size: int | None = None, model_size: ModelSize | None = None, multi_scale: bool | None = None, nms_iou_threshold: float | None = None, tile_grid_size: str | None = None, tile_overlap_ratio: float | None = None, tile_predictions_nms_threshold: float | None = None, validation_iou_threshold: float | None = None, validation_metric_type: ValidationMetricType | None = None, log_training_metrics: LogTrainingMetrics | None = None, log_validation_loss: LogValidationLoss | None = None, **kwargs)
パラメーター
- gradient_accumulation_step
- int
グラデーションの累積とは、モデルの重みを更新せずに構成された数の "GradAccumulationStep" ステップを実行し、それらのステップの勾配を蓄積し、累積勾配を使用して重みの更新を計算することを意味します。 正の整数にする必要があります。
- layers_to_freeze
- int
モデルのフリーズするレイヤーの数。 正の整数にする必要があります。 たとえば、'seresnext' の値として 2 を渡すと、レイヤー 0 とレイヤー 1 がフリーズします。 サポートされているモデルの完全な一覧とレイヤーのフリーズの詳細については、次を参照してください。 https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models
- learning_rate_scheduler
- str または LearningRateScheduler
学習率スケジューラの種類。 'warmup_cosine' または 'step' である必要があります。 使用できる値は、"None"、"WarmupCosine"、"Step" です。
- model_name
- str
トレーニングに使用するモデルの名前。 使用可能なモデルの詳細については、公式ドキュメントを参照してください。 https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models
- warmup_cosine_lr_cycles
- float
学習率スケジューラが "warmup_cosine" の場合のコサイン サイクルの値。 範囲 [0, 1] の float にする必要があります。
- warmup_cosine_lr_warmup_epochs
- int
学習率スケジューラが "warmup_cosine" の場合のウォームアップ エポックの値。 正の整数にする必要があります。
- box_detections_per_image
- int
すべてのクラスで、画像あたりの最大検出数。 正の整数にする必要があります。 注: この設定は、"yolov5" アルゴリズムではサポートされていません。
- box_score_threshold
- float
推論中に、BoxScoreThreshold より大きい分類スコアを持つ提案のみを返します。 範囲 [0, 1] の float である必要があります。
- image_size
- int
トレーニングおよび検証用の画像サイズ。 正の整数にする必要があります。 注: サイズが大きすぎると、トレーニング実行が CUDA OOM に入る可能性があります。 注: この設定は、'yolov5' アルゴリズムでのみサポートされています。
- max_size
- int
バックボーンにフィードする前に再スケーリングする画像の最大サイズ。 正の整数にする必要があります。 注: サイズが大きすぎる場合、トレーニングの実行が CUDA OOM になることがあります。 注: この設定は、"yolov5" アルゴリズムではサポートされていません。
- min_size
- int
バックボーンにフィードする前に再スケーリングする画像の最小サイズ。 正の整数にする必要があります。 注: サイズが大きすぎる場合、トレーニングの実行が CUDA OOM になることがあります。 注: この設定は、"yolov5" アルゴリズムではサポートされていません。
モデルのサイズ。 'small'、'medium'、'large' である必要があります。 注: モデルのサイズが大きすぎる場合、トレーニングの実行が CUDA OOM になることがあります。 注: この設定は、'yolov5' アルゴリズムでのみサポートされています。 使用できる値は、"None"、"Small"、"Medium"、"Large"、"ExtraLarge" です。
- multi_scale
- bool
イメージ サイズを +/- 50% 変更して、マルチスケール イメージを有効にします。 注: 十分な GPU メモリがない場合、トレーニングの実行が CUDA OOM になることがあります。 注: この設定は、'yolov5' アルゴリズムでのみサポートされています。
- tile_grid_size
- str
各画像のタイルに使用するグリッド サイズ。 注: 小さなオブジェクト検出ロジックを有効にするには、TileGridSize を None にすることはできません。 mxn 形式の 2 つの整数を含む文字列。 注: この設定は、"yolov5" アルゴリズムではサポートされていません。
- tile_overlap_ratio
- float
各ディメンションの隣接するタイル間のオーバーラップ率。 [0, 1] の範囲内で float である必要があります。 注: この設定は、"yolov5" アルゴリズムではサポートされていません。
- tile_predictions_nms_threshold
- float
タイルおよび画像から予測をマージしながら NMS を実行するために使用する IOU しきい値。 検証や推論で使用されます。 範囲 [0, 1] に float を指定する必要があります。 注: この設定は、"yolov5" アルゴリズムではサポートされていません。
- validation_metric_type
- str または ValidationMetricType
検証メトリックに使用するメトリック計算方法。 使用できる値は、"None"、"Coco"、"Voc"、"CocoVoc" です。
- log_training_metrics
- str または <xref:azure.mgmt.machinelearningservices.models.LogTrainingMetrics>
は、トレーニング メトリックをログに記録するかどうかを示します
- log_validation_loss
- str または <xref:azure.mgmt.machinelearningservices.models.LogValidationLoss>
は、検証の損失をログに記録するかどうかを示します
Azure SDK for Python