次の方法で共有


StandardTrainersCatalog.OneVersusAll<TModel> メソッド

定義

OneVersusAllTrainerで指定された二項分類推定器を使用して、一対全戦略を使用して多クラスターゲットを予測する、複数クラスのターゲットを作成しますbinaryEstimator

public static Microsoft.ML.Trainers.OneVersusAllTrainer OneVersusAll<TModel> (this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<TModel>,TModel> binaryEstimator, string labelColumnName = "Label", bool imputeMissingLabelsAsNegative = false, Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> calibrator = default, int maximumCalibrationExampleCount = 1000000000, bool useProbabilities = true) where TModel : class;
static member OneVersusAll : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.Data.BinaryPredictionTransformer<'Model>, 'Model (requires 'Model : null)> * string * bool * Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> * int * bool -> Microsoft.ML.Trainers.OneVersusAllTrainer (requires 'Model : null)
<Extension()>
Public Function OneVersusAll(Of TModel As Class) (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, binaryEstimator As ITrainerEstimator(Of BinaryPredictionTransformer(Of TModel), TModel), Optional labelColumnName As String = "Label", Optional imputeMissingLabelsAsNegative As Boolean = false, Optional calibrator As IEstimator(Of ISingleFeaturePredictionTransformer(Of ICalibrator)) = Nothing, Optional maximumCalibrationExampleCount As Integer = 1000000000, Optional useProbabilities As Boolean = true) As OneVersusAllTrainer

型パラメーター

TModel

モデルの型。 この型パラメーターは、通常から自動的 binaryEstimatorに推論されます。

パラメーター

catalog
MulticlassClassificationCatalog.MulticlassClassificationTrainers

多クラス分類カタログ トレーナー オブジェクト。

binaryEstimator
ITrainerEstimator<BinaryPredictionTransformer<TModel>,TModel>

ベース トレーナーとして使用されるバイナリ ITrainerEstimator<TTransformer,TModel> のインスタンス。

labelColumnName
String

ラベル列の名前。

imputeMissingLabelsAsNegative
Boolean

欠落しているラベルを、欠落したままにするのではなく、負のラベルを持つものとして扱うかどうか。

calibrator
IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>

校正器。 校正器が明示的に指定されていない場合は、既定で Microsoft.ML.Calibrators.PlattCalibratorTrainer

maximumCalibrationExampleCount
Int32

校正器をトレーニングするインスタンスの数。

useProbabilities
Boolean

確率 (生の出力と比較) を使用して、トップ スコア カテゴリを識別します。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic.Trainers.MulticlassClassification
{
    public static class OneVersusAll
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline =
                // Convert the string labels into key types.
                mlContext.Transforms.Conversion.MapValueToKey("Label")
                // Apply OneVersusAll multiclass meta trainer on top of
                // binary trainer.
                .Append(mlContext.MulticlassClassification.Trainers
                .OneVersusAll(
                mlContext.BinaryClassification.Trainers.SdcaLogisticRegression()));

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Convert IDataView object to a list.
            var predictions = mlContext.Data
                .CreateEnumerable<Prediction>(transformedTestData,
                reuseRowObject: false).ToList();

            // Look at 5 predictions
            foreach (var p in predictions.Take(5))
                Console.WriteLine($"Label: {p.Label}, " +
                    $"Prediction: {p.PredictedLabel}");

            // Expected output:
            //   Label: 1, Prediction: 1
            //   Label: 2, Prediction: 2
            //   Label: 3, Prediction: 2
            //   Label: 2, Prediction: 2
            //   Label: 3, Prediction: 2

            // Evaluate the overall metrics
            var metrics = mlContext.MulticlassClassification
                .Evaluate(transformedTestData);

            PrintMetrics(metrics);

            // Expected output:
            //   Micro Accuracy: 0.90
            //   Macro Accuracy: 0.90
            //   Log Loss: 0.36
            //   Log Loss Reduction: 0.68

            //   Confusion table
            //             ||========================
            //   PREDICTED ||     0 |     1 |     2 | Recall
            //   TRUTH     ||========================
            //           0 ||   152 |     0 |     8 | 0.9500
            //           1 ||     0 |   168 |     9 | 0.9492
            //           2 ||    17 |    15 |   131 | 0.8037
            //             ||========================
            //   Precision ||0.8994 |0.9180 |0.8851 |
        }

        // Generates random uniform doubles in [-0.5, 0.5)
        // range with labels 1, 2 or 3.
        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)(random.NextDouble() - 0.5);
            for (int i = 0; i < count; i++)
            {
                // Generate Labels that are integers 1, 2 or 3
                var label = random.Next(1, 4);
                yield return new DataPoint
                {
                    Label = (uint)label,
                    // Create random features that are correlated with the label.
                    // The feature values are slightly increased by adding a
                    // constant multiple of label.
                    Features = Enumerable.Repeat(label, 20)
                        .Select(x => randomFloat() + label * 0.2f).ToArray()

                };
            }
        }

        // Example with label and 20 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public uint Label { get; set; }
            [VectorType(20)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public uint Label { get; set; }
            // Predicted label from the trainer.
            public uint PredictedLabel { get; set; }
        }

        // Pretty-print MulticlassClassificationMetrics objects.
        public static void PrintMetrics(MulticlassClassificationMetrics metrics)
        {
            Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
            Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
            Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
            Console.WriteLine(
                $"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");

            Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
        }
    }
}

注釈

一対全戦略では、二項分類アルゴリズムを使用してクラスごとに 1 つの分類子をトレーニングします。このアルゴリズムは、そのクラスを他のすべてのクラスと区別します。 次に、これらの二項分類子を実行し、信頼度スコアが最も高い予測を選択することで、予測が行われます。

適用対象