次の方法で共有


ModelOperationsCatalog.Load メソッド

定義

オーバーロード

Load(Stream, DataViewSchema)

モデルとその入力スキーマをストリームから読み込みます。

Load(String, DataViewSchema)

モデルとその入力スキーマをファイルから読み込みます。

Load(Stream, DataViewSchema)

モデルとその入力スキーマをストリームから読み込みます。

public Microsoft.ML.ITransformer Load (System.IO.Stream stream, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : System.IO.Stream * DataViewSchema -> Microsoft.ML.ITransformer
Public Function Load (stream As Stream, ByRef inputSchema As DataViewSchema) As ITransformer

パラメーター

stream
Stream

読み込む読み取り可能なシーク可能なストリーム。

inputSchema
DataViewSchema

モデルの入力スキーマが含まれます。 入力の説明なしでモデルが保存された場合、入力スキーマはありません。 この場合、これは .null

戻り値

読み込まれたモデル。

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic.ModelOperations
{
    public class SaveLoadModel
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Generate sample data.
            var data = new List<Data>()
            {
                new Data() { Value="abc" }
            };

            // Convert data to IDataView.
            var dataView = mlContext.Data.LoadFromEnumerable(data);
            var inputColumnName = nameof(Data.Value);
            var outputColumnName = nameof(Transformation.Key);

            // Transform.
            ITransformer model = mlContext.Transforms.Conversion
                .MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);

            // Save model.
            mlContext.Model.Save(model, dataView.Schema, "model.zip");

            // Load model.
            using (var file = File.OpenRead("model.zip"))
                model = mlContext.Model.Load(file, out DataViewSchema schema);

            // Create a prediction engine from the model for feeding new data.
            var engine = mlContext.Model
                .CreatePredictionEngine<Data, Transformation>(model);

            var transformation = engine.Predict(new Data() { Value = "abc" });

            // Print transformation to console.
            Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
                transformation.Key);

            // Value: abc       Key:1

        }

        private class Data
        {
            public string Value { get; set; }
        }

        private class Transformation
        {
            public string Value { get; set; }
            public uint Key { get; set; }
        }
    }
}

適用対象

Load(String, DataViewSchema)

モデルとその入力スキーマをファイルから読み込みます。

public Microsoft.ML.ITransformer Load (string filePath, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : string * DataViewSchema -> Microsoft.ML.ITransformer
Public Function Load (filePath As String, ByRef inputSchema As DataViewSchema) As ITransformer

パラメーター

filePath
String

モデルの読み取り先となるファイルへのパス。

inputSchema
DataViewSchema

モデルの入力スキーマが含まれます。 入力の説明なしでモデルが保存された場合、入力スキーマはありません。 この場合、これは .null

戻り値

読み込まれたモデル。

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic.ModelOperations
{
    public class SaveLoadModelFile
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Generate sample data.
            var data = new List<Data>()
            {
                new Data() { Value="abc" }
            };

            // Convert data to IDataView.
            var dataView = mlContext.Data.LoadFromEnumerable(data);
            var inputColumnName = nameof(Data.Value);
            var outputColumnName = nameof(Transformation.Key);

            // Transform.
            ITransformer model = mlContext.Transforms.Conversion
                .MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);

            // Save model.
            mlContext.Model.Save(model, dataView.Schema, "model.zip");

            // Load model.
            model = mlContext.Model.Load("model.zip", out DataViewSchema schema);

            // Create a prediction engine from the model for feeding new data.
            var engine = mlContext.Model
                .CreatePredictionEngine<Data, Transformation>(model);

            var transformation = engine.Predict(new Data() { Value = "abc" });

            // Print transformation to console.
            Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
                transformation.Key);

            // Value: abc       Key:1

        }

        private class Data
        {
            public string Value { get; set; }
        }

        private class Transformation
        {
            public string Value { get; set; }
            public uint Key { get; set; }
        }
    }
}

適用対象