次の方法で共有


MulticlassClassificationMetrics.PerClassLogLoss プロパティ

定義

各クラスの分類子の対数損失を取得します。 対数損失は、予測確率が真のクラス ラベルとどの程度異なるかに関して分類子のパフォーマンスを測定します。 対数損失が低いほど、より優れたモデルを示します。 真のクラスに対して 1 の確率を予測する完璧なモデルでは、対数損失は 0 になります。

public System.Collections.Generic.IReadOnlyList<double> PerClassLogLoss { get; }
member this.PerClassLogLoss : System.Collections.Generic.IReadOnlyList<double>
Public ReadOnly Property PerClassLogLoss As IReadOnlyList(Of Double)

プロパティ値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class LogLossPerClass
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(1000);

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Define the trainer.
            var pipeline =
                // Convert the string labels into key types.
                mlContext.Transforms.Conversion
                .MapValueToKey(nameof(DataPoint.Label))
                // Apply a multiclass trainer.
                .Append(mlContext.MulticlassClassification.Trainers
                .LightGbm());

            // Train the model.
            var model = pipeline.Fit(trainingData);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var testData = mlContext.Data
                .LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));

            // Run the model on test data set.
            var transformedTestData = model.Transform(testData);

            // Evaluate the overall metrics
            var metrics = mlContext.MulticlassClassification
                .Evaluate(transformedTestData);

            // Find the original label values.
            VBuffer<uint> keys = default;
            transformedTestData.Schema["PredictedLabel"].GetKeyValues(ref keys);
            var originalLabels = keys.DenseValues().ToArray();
            for (var i = 0; i < originalLabels.Length; i++)
                Console.WriteLine($"LogLoss for label " +
                    $"{originalLabels[i]}: {metrics.PerClassLogLoss[i]:F4}");

            // Expected output:
            //   LogLoss for label 7: 0.2578
            //   LogLoss for label 8: 0.2504
            //   LogLoss for label 2: 0.1121
            //   LogLoss for label 9: 0.2229
            //   LogLoss for label 6: 0.1737
            //   LogLoss for label 1: 0.2645
            //   LogLoss for label 3: 0.2235
            //   LogLoss for label 5: 0.1128
            //   LogLoss for label 4: 0.1442
        }

        // Generates data points with random features and labels 1 to 9.
        private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
            int seed = 0)

        {
            var random = new Random(seed);
            float randomFloat() => (float)(random.NextDouble() - 0.5);
            for (int i = 0; i < count; i++)
            {
                // Generate Labels that are integers 1, 2 or 3
                var label = random.Next(1, 10);
                yield return new DataPoint
                {
                    Label = (uint)label,
                    // Create random features that are correlated with the label.
                    // The feature values are slightly increased by adding a
                    // constant multiple of label.
                    Features = Enumerable.Repeat(label, 20)
                        .Select(x => randomFloat() + label * 0.2f).ToArray()

                };
            }
        }

        // Example with label and 20 feature values. A data set is a collection of
        // such examples.
        private class DataPoint
        {
            public uint Label { get; set; }
            [VectorType(20)]
            public float[] Features { get; set; }
        }

        // Class used to capture predictions.
        private class Prediction
        {
            // Original label.
            public uint Label { get; set; }
            // Predicted label from the trainer.
            public uint PredictedLabel { get; set; }
        }
    }
}

注釈

対数損失メトリックは $-\frac{1}{m} \sum_{i=1}^m \log(p_i)$として計算されます。ここで、$m$ はテスト セット内のインスタンスの数です。 $p_i$ は、インスタンスがクラスに属している場合は分類子によって返される確率で、インスタンスがクラスに属していない場合は分類子から返される確率を 1 から引いた確率です。

適用対象