次の方法で共有


ステップ 4 - .NET 検索コードを調べる

前のレッスンでは、静的 Web アプリに検索を追加しました。 このレッスンでは、統合を確立するための基本的な手順について説明します。 この記事では、検索を Web アプリに統合する方法に関するチート シートをお探しの場合に知っておく必要があることについて説明します。

Azure SDK Azure.Search.Documents

関数アプリでは、Azure SDK for Azure AI Search を使用します。

関数アプリは、リソース名、リソース キー、およびインデックス名を使用して、SDK を通じてクラウドベースの Azure AI Search API に対して認証を行います。 シークレットは静的 Web アプリの設定に格納されており、環境変数として関数に取り込まれます。

local.settings.json ファイルでシークレットを構成する

{
  "IsEncrypted": false,
  "Values": {
    "AzureWebJobsStorage": "",
    "FUNCTIONS_WORKER_RUNTIME": "dotnet-isolated",
    "SearchApiKey": "",
    "SearchServiceName": "",
    "SearchIndexName": "good-books"
  },
  "Host": {
    "CORS": "*"
  }
}

Azure 関数: カタログを検索する

Search API は検索語句を受け取り、検索インデックス内のすべてのドキュメントから探して、一致項目の一覧を返します。 Suggest API を通じては、ユーザーの種類として部分的な文字列が検索エンジンに送信され、検索インデックス内のドキュメント全体で書籍のタイトルや作成者などの検索用語が提案され、一致結果の小さなリストが返されます。

Azure 関数は、検索の構成情報を取り込んで、クエリを実行します。

検索 suggester、sg は、一括アップロードの際に使用されるスキーマ ファイルに定義されています。

using Azure;
using Azure.Core.Serialization;
using Azure.Search.Documents;
using Azure.Search.Documents.Models;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Azure.Functions.Worker.Http;
using Microsoft.Extensions.Logging;
using System.Net;
using System.Text.Json;
using System.Text.Json.Serialization;
using WebSearch.Models;
using SearchFilter = WebSearch.Models.SearchFilter;

namespace WebSearch.Function
{
    public class Search
    {
        private static string searchApiKey = Environment.GetEnvironmentVariable("SearchApiKey", EnvironmentVariableTarget.Process);
        private static string searchServiceName = Environment.GetEnvironmentVariable("SearchServiceName", EnvironmentVariableTarget.Process);
        private static string searchIndexName = Environment.GetEnvironmentVariable("SearchIndexName", EnvironmentVariableTarget.Process) ?? "good-books";

        private readonly ILogger<Lookup> _logger;

        public Search(ILogger<Lookup> logger)
        {
            _logger = logger;
        }

        [Function("search")]
        public async Task<HttpResponseData> RunAsync(
            [HttpTrigger(AuthorizationLevel.Anonymous, "post")] HttpRequestData req, 
            FunctionContext executionContext)
        {
            string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
            var data = JsonSerializer.Deserialize<RequestBodySearch>(requestBody);

            // Azure AI Search 
            Uri serviceEndpoint = new($"https://{searchServiceName}.search.windows.net/");

            SearchClient searchClient = new(
                serviceEndpoint,
                searchIndexName,
                new AzureKeyCredential(searchApiKey)
            );

            SearchOptions options = new()

            {
                Size = data.Size,
                Skip = data.Skip,
                IncludeTotalCount = true,
                Filter = CreateFilterExpression(data.Filters)
            };
            options.Facets.Add("authors");
            options.Facets.Add("language_code");

            SearchResults<SearchDocument> searchResults = searchClient.Search<SearchDocument>(data.SearchText, options);

            var facetOutput = new Dictionary<string, IList<FacetValue>>();
            foreach (var facetResult in searchResults.Facets)
            {
                facetOutput[facetResult.Key] = facetResult.Value
                           .Select(x => new FacetValue { value = x.Value.ToString(), count = x.Count })

                           .ToList();
            }

            // Data to return 
            var output = new SearchOutput
            {
                Count = searchResults.TotalCount,
                Results = searchResults.GetResults().ToList(),
                Facets = facetOutput
            };
            
            var response = req.CreateResponse(HttpStatusCode.Found);

            // Serialize data
            var serializer = new JsonObjectSerializer(
                new JsonSerializerOptions(JsonSerializerDefaults.Web));
            await response.WriteAsJsonAsync(output, serializer);

            return response;
        }

        public static string CreateFilterExpression(List<SearchFilter> filters)
        {
            if (filters is null or { Count: <= 0 })
            {
                return null;
            }

            List<string> filterExpressions = new();


            List<SearchFilter> authorFilters = filters.Where(f => f.field == "authors").ToList();
            List<SearchFilter> languageFilters = filters.Where(f => f.field == "language_code").ToList();

            List<string> authorFilterValues = authorFilters.Select(f => f.value).ToList();

            if (authorFilterValues.Count > 0)
            {
                string filterStr = string.Join(",", authorFilterValues);
                filterExpressions.Add($"{"authors"}/any(t: search.in(t, '{filterStr}', ','))");
            }

            List<string> languageFilterValues = languageFilters.Select(f => f.value).ToList();
            foreach (var value in languageFilterValues)
            {
                filterExpressions.Add($"language_code eq '{value}'");
            }

            return string.Join(" and ", filterExpressions);
        }
    }
}

クライアント: カタログから検索する

次のコードを使用して、React クライアントで Azure 関数を呼び出します。

import React, { useEffect, useState, Suspense } from 'react';
import axios from '../../axios.js';
import CircularProgress  from '@mui/material/CircularProgress';
import { useLocation, useNavigate } from "react-router-dom";

import Results from '../../components/Results/Results';
import Pager from '../../components/Pager/Pager';
import Facets from '../../components/Facets/Facets';
import SearchBar from '../../components/SearchBar/SearchBar';

import "./Search.css";

export default function Search() {
  
  let location = useLocation();
  const navigate = useNavigate();
  
  const [ results, setResults ] = useState([]);
  const [ resultCount, setResultCount ] = useState(0);
  const [ currentPage, setCurrentPage ] = useState(1);
  const [ q, setQ ] = useState(new URLSearchParams(location.search).get('q') ?? "*");
  const [ top ] = useState(new URLSearchParams(location.search).get('top') ?? 8);
  const [ skip, setSkip ] = useState(new URLSearchParams(location.search).get('skip') ?? 0);
  const [ filters, setFilters ] = useState([]);
  const [ facets, setFacets ] = useState({});
  const [ isLoading, setIsLoading ] = useState(true);

  let resultsPerPage = top;
  
  useEffect(() => {
    setIsLoading(true);
    setSkip((currentPage-1) * top);
    const body = {
      q: q,
      top: top,
      skip: skip,
      filters: filters
    };

    axios.post( '/api/search', body)
      .then(response => {
            console.log(JSON.stringify(response.data))
            setResults(response.data.results);
            setFacets(response.data.facets);
            setResultCount(response.data.count);
            setIsLoading(false);
        } )
        .catch(error => {
            console.log(error);
            setIsLoading(false);
        });
    
  }, [q, top, skip, filters, currentPage]);

  // pushing the new search term to history when q is updated
  // allows the back button to work as expected when coming back from the details page
  useEffect(() => {
    navigate('/search?q=' + q);  
    setCurrentPage(1);
    setFilters([]);
    // eslint-disable-next-line react-hooks/exhaustive-deps
  }, [q]);


  let postSearchHandler = (searchTerm) => {
    //console.log(searchTerm);
    setQ(searchTerm);
  }

  var body;
  if (isLoading) {
    body = (
      <div className="col-md-9">
        <CircularProgress />
      </div>);
  } else {
    body = (
      <div className="col-md-9">
        <Results documents={results} top={top} skip={skip} count={resultCount} query={q}></Results>
        <Pager className="pager-style" currentPage={currentPage} resultCount={resultCount} resultsPerPage={resultsPerPage} setCurrentPage={setCurrentPage}></Pager>
      </div>
    )
  }

  // filters should be applied across entire result set, 
  // not just within the current page
  const updateFilterHandler = (newFilters) => {

    // Reset paging
    setSkip(0); 
    setCurrentPage(1);

    // Set filters
    setFilters(newFilters);
  };

  return (
    <main className="main main--search container-fluid">
      
      <div className="row">
        <div className="search-bar-column col-md-3">
          <div className="search-bar">
            <SearchBar postSearchHandler={postSearchHandler} query={q}></SearchBar>
          </div>
          <Facets facets={facets} filters={filters} setFilters={updateFilterHandler}></Facets>
        </div>
        {body}
      </div>
    </main>
  );
}

クライアント: カタログからの検索候補

Suggest 関数 API は、Material UI のオートコンプリート コンポーネントの一部として、\client\src\components\SearchBar\SearchBar.js の React アプリ内で呼び出されます。 このコンポーネントでは、入力テキストを使用して、そのテキストに一致する作成者と書籍を検索し、一致する可能性のある結果をドロップダウン リストの選択可能な項目に表示します。

import React, { useState, useEffect } from 'react';
import { TextField, Autocomplete, Button, Box } from '@mui/material';
import axios from '../../axios.js';

export default function SearchBar2({ postSearchHandler, query }) {
  const [q, setQ] = useState(() => query || '');
  const [suggestions, setSuggestions] = useState([]);

  const search = (value) => {
    console.log(`search: ${value}`);
    postSearchHandler(value);
  };

  useEffect(() => {
    console.log(`useEffect getSuggestions: ${q}`);
    if (q) {
      axios.post('/api/suggest', { q, top: 5, suggester: 'sg' })
      .then(response => {
          setSuggestions(response.data.suggestions.map(s => s.text));
      }).catch (error =>{
          console.log(error);
          setSuggestions([]);
        });
}}, [q]);


  const onInputChangeHandler = (event, value) => {
    console.log(`onInputChangeHandler: ${value}`);
    setQ(value);
  };


  const onChangeHandler = (event, value) => {
    console.log(`onChangeHandler: ${value}`);
    setQ(value);
    search(value);
  };

  const onEnterButton = (event) => {
    console.log(`onEnterButton: ${q}`);
    // if enter key is pressed
    if (event.key === 'Enter') {
      search(q);
    }
  };

  return (
    <div
      className="input-group"
      style={{ width: '95%', display: 'flex', justifyContent: 'center', alignItems: 'center', margin: '0 auto' }}
    >
      <Box sx={{ display: 'flex', alignItems: 'center', width: '75%', minWidth: '390px' }}>
      <Autocomplete
        freeSolo
        value={q}
        options={suggestions}
        onInputChange={onInputChangeHandler}
        onChange={onChangeHandler}
        disableClearable
        sx={{
          width: '75%',
          '& .MuiAutocomplete-endAdornment': {
            display: 'none'
          }
        }}
        renderInput={(params) => (
          <TextField
            {...params}
            id="search-box"
            className="form-control rounded-0"
            placeholder="What are you looking for?"
            onBlur={() => setSuggestions([])}
            onClick={() => setSuggestions([])}
          />
        )}
      />
      <div className="input-group-btn" style={{ marginLeft: '10px' }}>
        <Button variant="contained" color="primary" onClick={() => {
          console.log(`search button: ${q}`);
          search(q)}
          }>
          Search
        </Button>
      </div>
      </Box>
    </div>
  );
}

Azure 関数: 特定のドキュメントを取得する

Document Lookup API は ID を受け取り、検索インデックスからドキュメント オブジェクトを返します。

using Azure;
using Azure.Core.Serialization;
using Azure.Search.Documents;
using Azure.Search.Documents.Models;
using Microsoft.Azure.Functions.Worker;
using Microsoft.Azure.Functions.Worker.Http;
using Microsoft.Extensions.Logging;
using System.Net;
using System.Text.Json;
using WebSearch.Models;

namespace WebSearch.Function
{
    public class Lookup
    {
        private static string searchApiKey = Environment.GetEnvironmentVariable("SearchApiKey", EnvironmentVariableTarget.Process);
        private static string searchServiceName = Environment.GetEnvironmentVariable("SearchServiceName", EnvironmentVariableTarget.Process);
        private static string searchIndexName = Environment.GetEnvironmentVariable("SearchIndexName", EnvironmentVariableTarget.Process) ?? "good-books";

        private readonly ILogger<Lookup> _logger;

        public Lookup(ILogger<Lookup> logger)
        {
            _logger = logger;
        }


        [Function("lookup")]
        public async Task<HttpResponseData> RunAsync(
            [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")] HttpRequestData req, 
            FunctionContext executionContext)
        {

            // Get Document Id
            var query = System.Web.HttpUtility.ParseQueryString(req.Url.Query);
            string documentId = query["id"].ToString();

            // Azure AI Search 
            Uri serviceEndpoint = new($"https://{searchServiceName}.search.windows.net/");

            SearchClient searchClient = new(

                serviceEndpoint,
                searchIndexName,
                new AzureKeyCredential(searchApiKey)
            );

            var getDocumentResponse = await searchClient.GetDocumentAsync<SearchDocument>(documentId);

            // Data to return 
            var output = new LookupOutput
            {
                Document = getDocumentResponse.Value
            };

            var response = req.CreateResponse(HttpStatusCode.Found);

            // Serialize data
            var serializer = new JsonObjectSerializer(
                new JsonSerializerOptions(JsonSerializerDefaults.Web));
            await response.WriteAsJsonAsync(output, serializer);

            return response;
        }
    }
}

クライアント: 特定のドキュメントを取得する

この関数 API は、コンポーネント初期化の一部として、React アプリの中で \client\src\pages\Details\Detail.js で呼び出されます。

import React, { useState, useEffect } from "react";
import { useParams } from 'react-router-dom';
import Rating from '@mui/material/Rating';
import CircularProgress from '@mui/material/CircularProgress';
import axios from '../../axios.js';

import "./Details.css";

export default function Details() {

  let { id } = useParams();
  const [document, setDocument] = useState({});
  const [selectedTab, setTab] = useState(0);
  const [isLoading, setIsLoading] = useState(true);

  useEffect(() => {
    setIsLoading(true);
    // console.log(id);
    axios.get('/api/lookup?id=' + id)
      .then(response => {
        console.log(JSON.stringify(response.data))
        const doc = response.data.document;
        setDocument(doc);
        setIsLoading(false);
      })
      .catch(error => {
        console.log(error);
        setIsLoading(false);
      });

  }, [id]);

  // View default is loading with no active tab
  let detailsBody = (<CircularProgress />),
      resultStyle = "nav-link",
      rawStyle    = "nav-link";

  if (!isLoading && document) {
    // View result
    if (selectedTab === 0) {
      resultStyle += " active";
      detailsBody = (
        <div className="card-body">
          <h5 className="card-title">{document.original_title}</h5>
          <img className="image" src={document.image_url} alt="Book cover"></img>
          <p className="card-text">{document.authors?.join('; ')} - {document.original_publication_year}</p>
          <p className="card-text">ISBN {document.isbn}</p>
          <Rating name="half-rating-read" value={parseInt(document.average_rating)} precision={0.1} readOnly></Rating>
          <p className="card-text">{document.ratings_count} Ratings</p>
        </div>
      );
    }

    // View raw data
    else {
      rawStyle += " active";
      detailsBody = (
        <div className="card-body text-left">
          <pre><code>
            {JSON.stringify(document, null, 2)}
          </code></pre>
        </div>
      );
    }
  }

  return (
    <main className="main main--details container fluid">
      <div className="card text-center result-container">
        <div className="card-header">
          <ul className="nav nav-tabs card-header-tabs">
              <li className="nav-item"><button className={resultStyle} onClick={() => setTab(0)}>Result</button></li>
              <li className="nav-item"><button className={rawStyle} onClick={() => setTab(1)}>Raw Data</button></li>
          </ul>
        </div>
        {detailsBody}
      </div>
    </main>
  );
}

関数アプリをサポートする C# モデル

以下のモデルは、このアプリで関数をサポートするために使用されます。

using Azure.Search.Documents.Models;
using System.Text.Json.Serialization;

namespace WebSearch.Models
{
    public class RequestBodyLookUp
    {
        [JsonPropertyName("id")]
        public string Id { get; set; }
    }

    public class RequestBodySuggest
    {
        [JsonPropertyName("q")]
        public string SearchText { get; set; }

        [JsonPropertyName("top")]
        public int Size { get; set; }

        [JsonPropertyName("suggester")]
        public string SuggesterName { get; set; }
    }

    public class RequestBodySearch
    {
        [JsonPropertyName("q")]
        public string SearchText { get; set; }

        [JsonPropertyName("skip")]
        public int Skip { get; set; }

        [JsonPropertyName("top")]
        public int Size { get; set; }

        [JsonPropertyName("filters")]
        public List<SearchFilter> Filters { get; set; }
    }

    public class SearchFilter
    {
        public string field { get; set; }
        public string value { get; set; }
    }

    public class FacetValue
    {
        public string value { get; set; }
        public long? count { get; set; }
    }

    class SearchOutput
    {
        [JsonPropertyName("count")]
        public long? Count { get; set; }
        [JsonPropertyName("results")]
        public List<SearchResult<SearchDocument>> Results { get; set; }
        [JsonPropertyName("facets")]
        public Dictionary<String, IList<FacetValue>> Facets { get; set; }
    }
    class LookupOutput
    {
        [JsonPropertyName("document")]
        public SearchDocument Document { get; set; }
    }
    public class BookModel
    {
        public string id { get; set; }
        public decimal? goodreads_book_id { get; set; }
        public decimal? best_book_id { get; set; }
        public decimal? work_id { get; set; }
        public decimal? books_count { get; set; }
        public string isbn { get; set; }
        public string isbn13 { get; set; }
        public string[] authors { get; set; }
        public decimal? original_publication_year { get; set; }
        public string original_title { get; set; }
        public string title { get; set; }
        public string language_code { get; set; }
        public double? average_rating { get; set; }
        public decimal? ratings_count { get; set; }
        public decimal? work_ratings_count { get; set; }
        public decimal? work_text_reviews_count { get; set; }
        public decimal? ratings_1 { get; set; }
        public decimal? ratings_2 { get; set; }
        public decimal? ratings_3 { get; set; }
        public decimal? ratings_4 { get; set; }
        public decimal? ratings_5 { get; set; }
        public string image_url { get; set; }
        public string small_image_url { get; set; }
    }
}

次のステップ

Azure AI Search 開発の詳細を引き続き学ぶには、インデックス作成に関するこの次のチュートリアルをお試しください。