Classe extreme_value_distribution
Genera una distribuzione dei valori estremi.
template<class RealType = double> class extreme_value_distribution { public: // types typedef RealType result_type; struct param_type; // constructor and reset functions explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0); explicit extreme_value_distribution(const param_type& parm); void reset(); // generating functions template<class URNG> result_type operator()(URNG& gen); template<class URNG> result_type operator()(URNG& gen, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; };
Parametri
- RealType
Tipo di risultato a virgola mobile. Per impostazione predefinita, double. Per informazioni sui tipi possibili, vedere <random>.
Note
La classe di modelli descrive una distribuzione che produce valori di un tipo integrale specificato dall'utente o di tipo double se non è specificato alcun valore, distribuiti in base alla distribuzione dei valori estremi. La tabella seguente include collegamenti ad articoli relativi ai singoli membri.
extreme_value_distribution::a |
extreme_value_distribution::param |
|
extreme_value_distribution::operator() |
extreme_value_distribution::b |
Le funzioni di proprietà a() e b() restituiscono i valori rispettivi per i parametri di distribuzione archiviati a e b.
Per altre informazioni sulle classi di distribuzione e i rispettivi membri, vedere <random>.
Per informazioni dettagliate sulla distribuzione dei valori estremi, vedere l'articolo di Wolfram MathWorld relativo alla Distribuzione dei valori estremi.
Esempio
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double a, const double b, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::extreme_value_distribution<> distr(a, b);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "a() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.a() << std::endl;
std::cout << "b() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.b() << std::endl;
// generate the distribution as a histogram
std::map<double, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
int counter = 0;
for (const auto& elem : histogram) {
std::cout << std::fixed << std::setw(11) << ++counter << ": "
<< std::setw(14) << std::setprecision(10) << elem.first << std::endl;
}
std::cout << std::endl;
}
int main()
{
double a_dist = 0.0;
double b_dist = 1;
int samples = 10;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the \'a\' distribution parameter: ";
std::cin >> a_dist;
std::cout << "Enter a floating point value for the \'b\' distribution parameter (must be greater than zero): ";
std::cin >> b_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(a_dist, b_dist, samples);
}
Output
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 1.0000000000
Distribution for 10 samples:
1: -0.8813940331
2: -0.7698972281
3: 0.2951258007
4: 0.3110450734
5: 0.4210546820
6: 0.4210688771
7: 0.4598857960
8: 1.3155194200
9: 1.5379170046
10: 2.0568757061
Requisiti
Intestazione: <random>
Spazio dei nomi: std