Condividi tramite


Scrivere messaggi di evento in Azure Data Lake Storage Gen2 con l'API Apache Flink® DataStream

Importante

Azure HDInsight su Azure Kubernetes Service (AKS) è stato ritirato il 31 gennaio 2025. Scopri di più con questo annuncio.

È necessario eseguire la migrazione dei carichi di lavoro a Microsoft Fabric o a un prodotto Azure equivalente per evitare la chiusura brusca dei carichi di lavoro.

Importante

Questa funzionalità è attualmente in anteprima. Le condizioni supplementari per l'utilizzo per le anteprime di Microsoft Azure includono termini legali più validi applicabili alle funzionalità di Azure in versione beta, in anteprima o altrimenti non ancora rilasciate nella disponibilità generale. Per informazioni su questa anteprima specifica, vedere informazioni sull'anteprima di Azure HDInsight su AKS. Per domande o suggerimenti sulle funzionalità, inviare una richiesta in AskHDInsight con i dettagli e seguire Microsoft per altri aggiornamenti su Comunità di Azure HDInsight.

Apache Flink usa file system per usare e archiviare in modo permanente i dati, sia per i risultati delle applicazioni che per la tolleranza di errore e il ripristino. Questo articolo illustra come scrivere messaggi di evento in Azure Data Lake Storage Gen2 con l'API DataStream.

Prerequisiti

Questo connettore di file system offre le stesse garanzie per BATCH e STREAMING ed è progettato per fornire una semantica esattamente una volta per l'esecuzione di STREAMING. Per ulteriori informazioni, vedere Flink DataStream Filesystem.

Connettore Apache Kafka

Flink fornisce un connettore Apache Kafka per la lettura e la scrittura di dati nei topic Kafka con garanzie di esecuzione esattamente una volta. Per altre informazioni, vedere connettore Apache Kafka.

pom.xml su IntelliJ IDEA

<properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <flink.version>1.17.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <kafka.version>3.2.0</kafka.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-files -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-files</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Programma per ADLS Gen2 Sink

abfsGen2.java

Nota

Sostituire Apache Kafka nel cluster HDInsight bootStrapServers con i propri broker per Kafka 3.2

package contoso.example;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.configuration.MemorySize;
import org.apache.flink.connector.file.sink.FileSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;

import java.time.Duration;

public class KafkaSinkToGen2 {
    public static void main(String[] args) throws Exception {
        // 1. get stream execution env
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
         
        Configuration flinkConfig = new Configuration(); 

         flinkConfig.setString("classloader.resolve-order", "parent-first"); 

         env.getConfig().setGlobalJobParameters(flinkConfig);  

        // 2. read kafka message as stream input, update your broker ip's
        String brokers = "<update-broker-ip>:9092,<update-broker-ip>:9092,<update-broker-ip>:9092";
        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers(brokers)
                .setTopics("click_events")
                .setGroupId("my-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> stream = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");
        stream.print();

        // 3. sink to gen2, update container name and storage path
        String outputPath  = "abfs://<container-name>@<storage-path>.dfs.core.windows.net/flink/data/click_events";
        final FileSink<String> sink = FileSink
                .forRowFormat(new Path(outputPath), new SimpleStringEncoder<String>("UTF-8"))
                .withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                .withRolloverInterval(Duration.ofMinutes(2))
                                .withInactivityInterval(Duration.ofMinutes(3))
                                .withMaxPartSize(MemorySize.ofMebiBytes(5))
                                .build())
                .build();

        stream.sinkTo(sink);

        // 4. run stream
        env.execute("Kafka Sink To Gen2");
    }
}

Impacchetta il jar e invialo ad Apache Flink.

  1. Caricare il file JAR in ABFS.

    Screenshot che mostra la schermata della modalità app Flink.

  2. Trasmettere le informazioni del job jar nella creazione del cluster AppMode.

    Screenshot che mostra la modalità di creazione dell'app.

    Nota

    Assicurarsi di aggiungere il classloader.resolve-order come 'parent-first' e l'hadoop.classpath.enable come true

  3. Selezionare Aggregazione log processi per inviare i log dei processi nell'account di archiviazione.

    Screenshot che mostra come abilitare il registro dei lavori.

  4. È possibile visualizzare il processo in esecuzione.

    Screenshot che mostra l'interfaccia utente Flink.

Convalidare i dati di streaming in ADLS Gen2

Stiamo vedendo il flusso di click_events in ADLS Gen2.

Screenshot che mostra l'output di ADLS Gen2. Screenshot che mostra l'output dell'evento Flink click.

È possibile specificare un criterio in sequenza che esegue il rollback del file della parte in corso in una delle tre condizioni seguenti:

.withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                .withRolloverInterval(Duration.ofMinutes(5))
                                .withInactivityInterval(Duration.ofMinutes(3))
                                .withMaxPartSize(MemorySize.ofMebiBytes(5))
                                .build())

Riferimento