Understand Teams AI library
Teams AI library supports JavaScript and simplifies building bots that can interact with Microsoft Teams. It also facilitates the migration of existing bots to use AI-powered features. It supports migrating messaging, message extension, and Adaptive Cards capabilities to the new format. You can also upgrade your existing Teams apps with these features.
Earlier, you used the BotBuilder SDK to create bots for Teams. Teams AI library is designed to make this process easier and includes AI support. Initially, you might upgrade your bot without AI, but after upgrading, it can connect to AI or Large Language Models (LLMs) available in the AI library.
With Teams AI library, you can focus on:
- Understanding the role of activity handler in conversation management.
- Designing bot logic for intelligent responses.
- Integrating Natural Language Processing (NLP) for translating user intents to actions.
Activity handlers
Teams AI library supports the following activity handlers:
You need to use the AI library to scaffold bot and Adaptive Card handlers to the source file. In the subsequent sections, we've used the samples from the AI library to explain each capability and the path to migration.
Send or receive message
You can send and receive messages using the Bot Framework. The app listens for user messages, deletes the conversation state upon receipt, and replies. It also tracks the number of messages in a conversation and echoes back the user's message with the count.
// Listen for user to say "/reset" and then delete conversation state
app.OnMessage("/reset", ActivityHandlers.ResetMessageHandler);
// Listen for ANY message to be received. MUST BE AFTER ANY OTHER MESSAGE HANDLERS
app.OnActivity(ActivityTypes.Message, ActivityHandlers.MessageHandler);
return app;
Message extensions
In the Bot Framework SDK's TeamsActivityHandler
, set up the Message extensions query handler by extending handler methods. The app listens for search actions and item taps. It formats search results as Hero Cards displaying package information, and displays them in the messaging extension.
// Listen for search actions
app.MessageExtensions.OnQuery("searchCmd", activityHandlers.QueryHandler);
// Listen for item tap
app.MessageExtensions.OnSelectItem(activityHandlers.SelectItemHandler);
return app;
// Format search results in ActivityHandlers.cs
List<MessagingExtensionAttachment> attachments = packages.Select(package => new MessagingExtensionAttachment
{
ContentType = HeroCard.ContentType,
Content = new HeroCard
{
Title = package.Id,
Text = package.Description
},
Preview = new HeroCard
{
Title = package.Id,
Text = package.Description,
Tap = new CardAction
{
Type = "invoke",
Value = package
}
}.ToAttachment()
}).ToList();
// Return results as a list
return new MessagingExtensionResult
{
Type = "result",
AttachmentLayout = "list",
Attachments = attachments
};
Adaptive Cards capabilities
Register Adaptive Card action handlers using the app.adaptiveCards
property. The app listens for messages with static
or dynamic
keywords and returns an Adaptive Card using StaticMessageHandler()
or DynamicMessageHandler()
. It also listens for queries from a dynamic search card and submit buttons.
// Listen for messages that trigger returning an adaptive card
app.OnMessage(new Regex(@"static", RegexOptions.IgnoreCase), activityHandlers.StaticMessageHandler);
app.OnMessage(new Regex(@"dynamic", RegexOptions.IgnoreCase), activityHandlers.DynamicMessageHandler);
// Listen for query from dynamic search card
app.AdaptiveCards.OnSearch("nugetpackages", activityHandlers.SearchHandler);
// Listen for submit buttons
app.AdaptiveCards.OnActionSubmit("StaticSubmit", activityHandlers.StaticSubmitHandler);
app.AdaptiveCards.OnActionSubmit("DynamicSubmit", activityHandlers.DynamicSubmitHandler);
// Listen for ANY message to be received. MUST BE AFTER ANY OTHER HANDLERS
app.OnActivity(ActivityTypes.Message, activityHandlers.MessageHandler);
return app;
Bot logic for handling an action
The bot responds to the user's input with the action LightsOn
to turn the lights on.
The following example shows how Teams AI library makes it possible to manage the bot logic for handling an action LightsOn
or LightsOff
and connect it to the prompt used with OpenAI:
/ Create AI Model
if (!string.IsNullOrEmpty(config.OpenAI?.ApiKey))
{
builder.Services.AddSingleton<OpenAIModel>(sp => new(
new OpenAIModelOptions(config.OpenAI.ApiKey, "gpt-3.5-turbo")
{
LogRequests = true
},
sp.GetService<ILoggerFactory>()
));
}
else if (!string.IsNullOrEmpty(config.Azure?.OpenAIApiKey) && !string.IsNullOrEmpty(config.Azure.OpenAIEndpoint))
{
builder.Services.AddSingleton<OpenAIModel>(sp => new(
new AzureOpenAIModelOptions(
config.Azure.OpenAIApiKey,
"gpt-35-turbo",
config.Azure.OpenAIEndpoint
)
{
LogRequests = true
},
sp.GetService<ILoggerFactory>()
));
}
else
{
throw new Exception("please configure settings for either OpenAI or Azure");
}
// Create the bot as transient. In this case the ASP Controller is expecting an IBot.
builder.Services.AddTransient<IBot>(sp =>
{
// Create loggers
ILoggerFactory loggerFactory = sp.GetService<ILoggerFactory>()!;
// Create Prompt Manager
PromptManager prompts = new(new()
{
PromptFolder = "./Prompts"
});
// Adds function to be referenced in the prompt template
prompts.AddFunction("getLightStatus", async (context, memory, functions, tokenizer, args) =>
{
bool lightsOn = (bool)(memory.GetValue("conversation.lightsOn") ?? false);
return await Task.FromResult(lightsOn ? "on" : "off");
});
// Create ActionPlanner
ActionPlanner<AppState> planner = new(
options: new(
model: sp.GetService<OpenAIModel>()!,
prompts: prompts,
defaultPrompt: async (context, state, planner) =>
{
PromptTemplate template = prompts.GetPrompt("sequence");
return await Task.FromResult(template);
}
)
{ LogRepairs = true },
loggerFactory: loggerFactory
);
return new TeamsLightBot(new()
{
Storage = sp.GetService<IStorage>(),
AI = new(planner),
LoggerFactory = loggerFactory,
TurnStateFactory = () =>
{
return new AppState();
}
});
});
// LightBotActions defined in LightBotActions.cs
[Action("LightsOn")]
public async Task<string> LightsOn([ActionTurnContext] ITurnContext turnContext, [ActionTurnState] AppState turnState)
{
turnState.Conversation.LightsOn = true;
await turnContext.SendActivityAsync(MessageFactory.Text("[lights on]"));
return "the lights are now on";
}
[Action("LightsOff")]
public async Task<string> LightsOff([ActionTurnContext] ITurnContext turnContext, [ActionTurnState] AppState turnState)
{
turnState.Conversation.LightsOn = false;
await turnContext.SendActivityAsync(MessageFactory.Text("[lights off]"));
return "the lights are now off";
}
[Action("Pause")]
public async Task<string> LightsOff([ActionTurnContext] ITurnContext turnContext, [ActionParameters] Dictionary<string, object> args)
{
// Try to parse entities returned by the model.
// Expecting "time" to be a number of milliseconds to pause.
if (args.TryGetValue("time", out object? time))
{
if (time != null && time is string timeString)
{
if (int.TryParse(timeString, out int timeInt))
{
await turnContext.SendActivityAsync(MessageFactory.Text($"[pausing for {timeInt / 1000} seconds]"));
await Task.Delay(timeInt);
}
}
}
return "done pausing";
}
Message extension query
Teams AI library provides a more intuitive way to create handlers for message extension query commands, working alongside the existing Teams Bot Framework SDK.
The following is an example of how you can structure the code to handle a message extension query for the searchCmd
command.
// Listen for search actions
app.MessageExtensions.OnQuery("searchCmd", activityHandlers.QueryHandler);
// Listen for item tap
app.MessageExtensions.OnSelectItem(activityHandlers.SelectItemHandler);
return app;
// Format search results
List<MessagingExtensionAttachment> attachments = packages.Select(package => new MessagingExtensionAttachment
{
ContentType = HeroCard.ContentType,
Content = new HeroCard
{
Title = package.Id,
Text = package.Description
},
Preview = new HeroCard
{
Title = package.Id,
Text = package.Description,
Tap = new CardAction
{
Type = "invoke",
Value = package
}
}.ToAttachment()
}).ToList();
return new MessagingExtensionResult
{
Type = "result",
AttachmentLayout = "list",
Attachments = attachments
};
Intents to actions
A simple interface for actions and predictions allows bots to react confidently. Ambient presence helps bots learn intent, use prompts based on business logic, and generate responses. With Teams AI library, the prompt outlines the bot's actions and provides examples.
Conversation history enables natural dialogue, such as add cereal to groceries list, followed by also add coffee, indicating coffee should be added to the list.
The following is a conversation with an AI assistant. The AI assistant can manage lists and recognizes the following commands:
- DO
<action> <optional entities>
- SAY
<response>
The following actions are supported:
addItem list="<list name>" item="<text>"
removeItem list="<list name>" item="<text>"
summarizeLists
All entities are required parameters for actions.
Current list names:
{{conversation.listNames}}
Examples: Human: remind me to buy milk AI: DO addItem list="groceries" item="milk" THEN SAY Ok I added milk to your groceries list Human: we already have milk AI: DO removeItem list="groceries" item="milk" THEN SAY Ok I removed milk from your groceries list Human: buy ingredients to make margaritas AI: DO addItem list="groceries" item="tequila" THEN DO addItem list="groceries" item="orange liqueur" THEN DO addItem list="groceries" item="lime juice" THEN SAY Ok I added tequila, orange liqueur, and lime juice to your groceries list Human: do we have milk AI: DO findItem list="groceries" item="milk" Human: what's in my grocery list AI: DO summarizeLists Human: what's the contents of all my lists? AI: DO summarizeLists Human: show me all lists but change the title to Beach Party AI: DO summarizeLists Human: show me all lists as a card and sort the lists alphabetically AI: DO summarizeLists
Conversation history:
{{conversation.(history}}
Current query:
Human: {{activity.text}}
Current list names:
{{conversation.listNames}}
AI: The bot logic is streamlined to include handlers for actions such as
addItem
andremoveItem
. This distinction between actions and the prompts serves as a powerful tool as it guides AI to execute the actions and prompts.
[Action("AddItem")]
public string AddItem([ActionTurnState] ListState turnState, [ActionParameters] Dictionary<string, object> parameters)
{
ArgumentNullException.ThrowIfNull(turnState);
ArgumentNullException.ThrowIfNull(parameters);
string listName = GetParameterString(parameters, "list");
string item = GetParameterString(parameters, "item");
IList<string> items = GetItems(turnState, listName);
items.Add(item);
SetItems(turnState, listName, items);
return "item added. think about your next action";
}
[Action("RemoveItem")]
public async Task<string> RemoveItem([ActionTurnContext] ITurnContext turnContext, [ActionTurnState] ListState turnState, [ActionParameters] Dictionary<string, object> parameters)
{
ArgumentNullException.ThrowIfNull(turnContext);
ArgumentNullException.ThrowIfNull(turnState);
ArgumentNullException.ThrowIfNull(parameters);
string listName = GetParameterString(parameters, "list");
string item = GetParameterString(parameters, "item");
IList<string> items = GetItems(turnState, listName);
if (!items.Contains(item))
{
await turnContext.SendActivityAsync(ResponseBuilder.ItemNotFound(listName, item)).ConfigureAwait(false);
return "item not found. think about your next action";
}
items.Remove(item);
SetItems(turnState, listName, items);
return "item removed. think about your next action";
}