Classe System.Random
Questo articolo fornisce osservazioni supplementari alla documentazione di riferimento per questa API.
La Random classe rappresenta un generatore di numeri pseudo-casuali, ovvero un algoritmo che produce una sequenza di numeri che soddisfano determinati requisiti statistici per la casualità.
I numeri pseudo-casuali vengono scelti con la stessa probabilità da un set finito di numeri. I numeri scelti non sono completamente casuali perché un algoritmo matematico viene usato per selezionarli, ma sono sufficientemente casuali a scopo pratico. L'implementazione della Random classe si basa su una versione modificata dell'algoritmo generatore di numeri casuali sottrazione di Donald E. Knuth. Per altre informazioni, vedere D. E. Knuth. L'arte della programmazione informatica, volume 2: algoritmi seminumerici. Addison-Wesley, Reading, MA, terza edizione, 1997.
Per generare un numero casuale sicuro crittograficamente, ad esempio uno adatto per la creazione di una password casuale, usare uno dei metodi statici nella System.Security.Cryptography.RandomNumberGenerator classe .
Creare un'istanza del generatore di numeri casuali
Creare un'istanza del generatore di numeri casuali specificando un valore di inizializzazione (un valore iniziale per l'algoritmo di generazione di numeri pseudo-casuali) a un Random costruttore di classe. È possibile specificare il valore di inizializzazione in modo esplicito o implicito:
- Il Random(Int32) costruttore usa un valore di inizializzazione esplicito fornito.
- Il Random() costruttore usa il valore di inizializzazione predefinito. Questo è il modo più comune per creare un'istanza del generatore di numeri casuali.
In .NET Framework il valore di inizializzazione predefinito dipende dal tempo. In .NET Core il valore di inizializzazione predefinito viene prodotto dal generatore di numeri pseudo-casuali statici del thread.
Se lo stesso valore di inizializzazione viene usato per oggetti separati Random , genererà la stessa serie di numeri casuali. Ciò può essere utile per la creazione di un gruppo di test che elabora valori casuali o per la riproduzione di giochi che derivano i dati da numeri casuali. Si noti tuttavia che Random gli oggetti nei processi in esecuzione in versioni diverse di .NET Framework potrebbero restituire diverseseri di numeri casuali anche se vengono create istanze con valori di inizializzazione identici.
Per produrre sequenze diverse di numeri casuali, è possibile rendere il valore di inizializzazione dipendente dal tempo, generando così una serie diversa con ogni nuova istanza di Random. Il costruttore con Random(Int32) parametri può accettare un Int32 valore in base al numero di tick nell'ora corrente, mentre il costruttore senza Random() parametri usa l'orologio di sistema per generare il valore di inizializzazione. Tuttavia, solo in .NET Framework, poiché l'orologio ha una risoluzione limitata, l'uso del costruttore senza parametri per creare oggetti diversi Random in successione ravvicinata crea generatori di numeri casuali che producono sequenze identiche di numeri casuali. Nell'esempio seguente viene illustrato come due Random oggetti di cui viene creata un'istanza in successione ravvicinata in un'applicazione .NET Framework generano una serie identica di numeri casuali. Nella maggior parte dei sistemi Windows, Random è probabile che gli oggetti creati entro 15 millisecondi l'uno dall'altro abbiano valori di inizializzazione identici.
byte[] bytes1 = new byte[100];
byte[] bytes2 = new byte[100];
Random rnd1 = new Random();
Random rnd2 = new Random();
rnd1.NextBytes(bytes1);
rnd2.NextBytes(bytes2);
Console.WriteLine("First Series:");
for (int ctr = bytes1.GetLowerBound(0);
ctr <= bytes1.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes1[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
Console.WriteLine();
Console.WriteLine("Second Series:");
for (int ctr = bytes2.GetLowerBound(0);
ctr <= bytes2.GetUpperBound(0);
ctr++) {
Console.Write("{0, 5}", bytes2[ctr]);
if ((ctr + 1) % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
let bytes1 = Array.zeroCreate 100
let bytes2 = Array.zeroCreate 100
let rnd1 = Random()
let rnd2 = Random()
rnd1.NextBytes bytes1
rnd2.NextBytes bytes2
printfn "First Series"
for i = bytes1.GetLowerBound 0 to bytes1.GetUpperBound 0 do
printf "%5i" bytes1.[i]
if (i + 1) % 10 = 0 then printfn ""
printfn ""
printfn "Second Series"
for i = bytes2.GetLowerBound 0 to bytes2.GetUpperBound 0 do
printf "%5i" bytes2.[i]
if (i + 1) % 10 = 0 then printfn ""
// The example displays output like the following:
// First Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
//
// Second Series:
// 97 129 149 54 22 208 120 105 68 177
// 113 214 30 172 74 218 116 230 89 18
// 12 112 130 105 116 180 190 200 187 120
// 7 198 233 158 58 51 50 170 98 23
// 21 1 113 74 146 245 34 255 96 24
// 232 255 23 9 167 240 255 44 194 98
// 18 175 173 204 169 171 236 127 114 23
// 167 202 132 65 253 11 254 56 214 127
// 145 191 104 163 143 7 174 224 247 73
// 52 6 231 255 5 101 83 165 160 231
Module modMain
Public Sub Main()
Dim bytes1(99), bytes2(99) As Byte
Dim rnd1 As New Random()
Dim rnd2 As New Random()
rnd1.NextBytes(bytes1)
rnd2.NextBytes(bytes2)
Console.WriteLine("First Series:")
For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
Console.Write("{0, 5}", bytes1(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
Console.WriteLine()
Console.WriteLine("Second Series:")
For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
Console.Write("{0, 5}", bytes2(ctr))
If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' First Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
'
' Second Series:
' 97 129 149 54 22 208 120 105 68 177
' 113 214 30 172 74 218 116 230 89 18
' 12 112 130 105 116 180 190 200 187 120
' 7 198 233 158 58 51 50 170 98 23
' 21 1 113 74 146 245 34 255 96 24
' 232 255 23 9 167 240 255 44 194 98
' 18 175 173 204 169 171 236 127 114 23
' 167 202 132 65 253 11 254 56 214 127
' 145 191 104 163 143 7 174 224 247 73
' 52 6 231 255 5 101 83 165 160 231
Per evitare questo problema, creare un singolo Random oggetto anziché più oggetti. Si noti che la Random
classe in .NET Core non presenta questa limitazione.
Evitare più istanze
In .NET Framework l'inizializzazione di due generatori di numeri casuali in un ciclo stretto o in rapida successione crea due generatori di numeri casuali che possono produrre sequenze identiche di numeri casuali. Nella maggior parte dei casi, questa non è la finalità dello sviluppatore e può causare problemi di prestazioni, perché l'istanza e l'inizializzazione di un generatore di numeri casuali è un processo relativamente costoso.
Sia per migliorare le prestazioni sia per evitare inavvertitamente la creazione di generatori di numeri casuali separati che generano sequenze numeriche identiche, è consigliabile creare un Random oggetto per generare molti numeri casuali nel tempo, anziché creare nuovi Random oggetti per generare un numero casuale.
Tuttavia, la Random classe non è thread-safe. Se si chiamano Random metodi da più thread, seguire le linee guida descritte nella sezione successiva.
Thread safety
Invece di creare un'istanza di singoli Random oggetti, è consigliabile creare una singola Random istanza per generare tutti i numeri casuali necessari per l'app. Tuttavia, Random gli oggetti non sono thread-safe. Se l'app chiama Random metodi da più thread, è necessario usare un oggetto di sincronizzazione per assicurarsi che un solo thread possa accedere al generatore di numeri casuali alla volta. Se non si garantisce che l'oggetto Random sia accessibile in modo thread-safe, le chiamate ai metodi che restituiscono numeri casuali restituiscono 0.
L'esempio seguente usa l'istruzione di blocco C#, la funzione di blocco F# e l'istruzione SyncLock di Visual Basic per garantire che un singolo generatore di numeri casuali sia accessibile da 11 thread in modo thread-safe. Ogni thread genera 2 milioni di numeri casuali, conta il numero di numeri casuali generati e calcola la somma e quindi aggiorna i totali per tutti i thread al termine dell'esecuzione.
using System;
using System.Threading;
public class Example13
{
[ThreadStatic] static double previous = 0.0;
[ThreadStatic] static int perThreadCtr = 0;
[ThreadStatic] static double perThreadTotal = 0.0;
static CancellationTokenSource source;
static CountdownEvent countdown;
static Object randLock, numericLock;
static Random rand;
double totalValue = 0.0;
int totalCount = 0;
public Example13()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
countdown = new CountdownEvent(1);
source = new CancellationTokenSource();
}
public static void Main()
{
Example13 ex = new Example13();
Thread.CurrentThread.Name = "Main";
ex.Execute();
}
private void Execute()
{
CancellationToken token = source.Token;
for (int threads = 1; threads <= 10; threads++)
{
Thread newThread = new Thread(this.GetRandomNumbers);
newThread.Name = threads.ToString();
newThread.Start(token);
}
this.GetRandomNumbers(token);
countdown.Signal();
// Make sure all threads have finished.
countdown.Wait();
source.Dispose();
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
}
private void GetRandomNumbers(Object o)
{
CancellationToken token = (CancellationToken)o;
double result = 0.0;
countdown.AddCount(1);
try
{
for (int ctr = 0; ctr < 2000000; ctr++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock)
{
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0)
{
source.Cancel();
}
else
{
previous = result;
}
perThreadCtr++;
perThreadTotal += result;
}
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name);
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal);
Console.WriteLine("Random number mean: {0:N4}\n", perThreadTotal / perThreadCtr);
// Update overall totals.
lock (numericLock)
{
totalCount += perThreadCtr;
totalValue += perThreadTotal;
}
}
catch (OperationCanceledException e)
{
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name);
}
finally
{
countdown.Signal();
}
}
}
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
open System
open System.Threading
type Example() =
[<ThreadStatic; DefaultValue>]
static val mutable private previous : float
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadCtr : int
[<ThreadStatic; DefaultValue>]
static val mutable private perThreadTotal : float
static let source = new CancellationTokenSource()
static let countdown = new CountdownEvent(1)
static let randLock = obj ()
static let numericLock = obj ()
static let rand = Random()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.GetRandomNumbers(token: CancellationToken) =
let mutable result = 0.0
countdown.AddCount 1
try
try
for _ = 0 to 1999999 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () ->
result <- rand.NextDouble() )
// Check for corruption of Random instance.
if result = Example.previous && result = 0.0 then
source.Cancel()
else
Example.previous <- result
Example.perThreadCtr <- Example.perThreadCtr + 1
Example.perThreadTotal <- Example.perThreadTotal + result
// Update overall totals.
lock numericLock (fun () ->
// Show result.
printfn "Thread %s finished execution." Thread.CurrentThread.Name
printfn $"Random numbers generated: {Example.perThreadCtr:N0}"
printfn $"Sum of random numbers: {Example.perThreadTotal:N2}"
printfn $"Random number mean: {(Example.perThreadTotal / float Example.perThreadCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + Example.perThreadCtr
totalValue <- totalValue + Example.perThreadTotal)
with :? OperationCanceledException as e ->
printfn "Corruption in Thread %s %s" (e.GetType().Name) Thread.CurrentThread.Name
finally
countdown.Signal() |> ignore
member this.Execute() =
let token = source.Token
for i = 1 to 10 do
let newThread = Thread(fun () -> this.GetRandomNumbers token)
newThread.Name <- string i
newThread.Start()
this.GetRandomNumbers token
countdown.Signal() |> ignore
countdown.Wait()
source.Dispose()
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Thread 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,491.05
// Random number mean: 0.5002
//
// Thread 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,329.64
// Random number mean: 0.4997
//
// Thread 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,166.89
// Random number mean: 0.5001
//
// Thread 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,628.37
// Random number mean: 0.4998
//
// Thread Main finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,920.89
// Random number mean: 0.5000
//
// Thread 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,370.45
// Random number mean: 0.4997
//
// Thread 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,330.92
// Random number mean: 0.4997
//
// Thread 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,172.79
// Random number mean: 0.5001
//
// Thread 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,079.43
// Random number mean: 0.5000
//
// Thread 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,817.91
// Random number mean: 0.4999
//
// Thread 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,930.63
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 10,998,238.98
// Random number mean: 0.4999
Imports System.Threading
Module Example15
<ThreadStatic> Dim previous As Double = 0.0
<ThreadStatic> Dim perThreadCtr As Integer = 0
<ThreadStatic> Dim perThreadTotal As Double = 0.0
Dim source As New CancellationTokenSource()
Dim countdown As New CountdownEvent(1)
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Thread.CurrentThread.Name = "Main"
Dim token As CancellationToken = source.Token
For threads As Integer = 1 To 10
Dim newThread As New Thread(AddressOf GetRandomNumbers)
newThread.Name = threads.ToString()
newThread.Start(token)
Next
GetRandomNumbers(token)
countdown.Signal()
' Make sure all threads have finished.
countdown.Wait()
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
End Sub
Private Sub GetRandomNumbers(o As Object)
Dim token As CancellationToken = CType(o, CancellationToken)
Dim result As Double = 0.0
countdown.AddCount(1)
Try
For ctr As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
perThreadCtr += 1
perThreadTotal += result
Next
Console.WriteLine("Thread {0} finished execution.",
Thread.CurrentThread.Name)
Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
Console.WriteLine("Random number mean: {0:N4}", perThreadTotal / perThreadCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += perThreadCtr
totalValue += perThreadTotal
End SyncLock
Catch e As OperationCanceledException
Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
Finally
countdown.Signal()
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Thread 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,491.05
' Random number mean: 0.5002
'
' Thread 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,329.64
' Random number mean: 0.4997
'
' Thread 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,166.89
' Random number mean: 0.5001
'
' Thread 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,628.37
' Random number mean: 0.4998
'
' Thread Main finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,920.89
' Random number mean: 0.5000
'
' Thread 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,370.45
' Random number mean: 0.4997
'
' Thread 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,330.92
' Random number mean: 0.4997
'
' Thread 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,172.79
' Random number mean: 0.5001
'
' Thread 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,079.43
' Random number mean: 0.5000
'
' Thread 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,817.91
' Random number mean: 0.4999
'
' Thread 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,930.63
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 10,998,238.98
' Random number mean: 0.4999
L'esempio garantisce la thread-safety nei modi seguenti:
- L'attributo ThreadStaticAttribute viene usato per definire variabili locali del thread che tengono traccia del numero totale di numeri casuali generati e della relativa somma per ogni thread.
- Un blocco (l'istruzione
lock
in C#, lalock
funzione in F# e l'istruzioneSyncLock
in Visual Basic) protegge l'accesso alle variabili per il conteggio totale e la somma di tutti i numeri casuali generati in tutti i thread. - Viene usato un semaforo (l'oggetto CountdownEvent ) per garantire che il thread principale si blocchi fino al completamento dell'esecuzione di tutti gli altri thread.
- Nell'esempio viene verificato se il generatore di numeri casuali è danneggiato determinando se due chiamate consecutive ai metodi di generazione di numeri casuali restituiscono 0. Se viene rilevato un danneggiamento, l'esempio usa l'oggetto CancellationTokenSource per segnalare che tutti i thread devono essere annullati.
- Prima di generare ogni numero casuale, ogni thread controlla lo stato dell'oggetto CancellationToken . Se viene richiesto l'annullamento, nell'esempio viene chiamato il CancellationToken.ThrowIfCancellationRequested metodo per annullare il thread.
L'esempio seguente è identico al primo, ad eccezione del fatto che usa un Task oggetto e un'espressione lambda anziché oggetti Thread .
using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
public class Example15
{
static Object randLock, numericLock;
static Random rand;
static CancellationTokenSource source;
double totalValue = 0.0;
int totalCount = 0;
public Example15()
{
rand = new Random();
randLock = new Object();
numericLock = new Object();
source = new CancellationTokenSource();
}
public static async Task Main()
{
Example15 ex = new Example15();
Thread.CurrentThread.Name = "Main";
await ex.Execute();
}
private async Task Execute()
{
List<Task> tasks = new List<Task>();
for (int ctr = 0; ctr <= 10; ctr++)
{
CancellationToken token = source.Token;
int taskNo = ctr;
tasks.Add(Task.Run(() =>
{
double previous = 0.0;
int taskCtr = 0;
double taskTotal = 0.0;
double result = 0.0;
for (int n = 0; n < 2000000; n++)
{
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested();
lock (randLock)
{
result = rand.NextDouble();
}
// Check for corruption of Random instance.
if ((result == previous) && result == 0)
{
source.Cancel();
}
else
{
previous = result;
}
taskCtr++;
taskTotal += result;
}
// Show result.
Console.WriteLine("Task {0} finished execution.", taskNo);
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr);
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal);
Console.WriteLine("Random number mean: {0:N4}\n", taskTotal / taskCtr);
// Update overall totals.
lock (numericLock)
{
totalCount += taskCtr;
totalValue += taskTotal;
}
},
token));
}
try
{
await Task.WhenAll(tasks.ToArray());
Console.WriteLine("\nTotal random numbers generated: {0:N0}", totalCount);
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue);
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount);
}
catch (AggregateException e)
{
foreach (Exception inner in e.InnerExceptions)
{
TaskCanceledException canc = inner as TaskCanceledException;
if (canc != null)
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id);
else
Console.WriteLine("Exception: {0}", inner.GetType().Name);
}
}
finally
{
source.Dispose();
}
}
}
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
open System
open System.Threading
open System.Threading.Tasks
type Example() =
static let source = new CancellationTokenSource()
static let rand = Random()
static let randLock = obj ()
static let numericLock = obj ()
let mutable totalValue = 0.0
let mutable totalCount = 0
member _.Execute() =
use source = source // Dispose of the CancellationTokenSource when we're done with it.
let token = source.Token
let tasks =
[| for i = 0 to 10 do
Task.Run(
(fun () ->
let mutable previous = 0.0
let mutable taskCtr = 0
let mutable taskTotal = 0.0
let mutable result = 0.0
for _ = 1 to 2000000 do
// Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
lock randLock (fun () -> result <- rand.NextDouble())
// Check for corruption of Random instance.
if result = previous && result = 0.0 then
source.Cancel()
else
previous <- result
taskCtr <- taskCtr + 1
taskTotal <- taskTotal + result
lock numericLock (fun () ->
// Show result.
printfn "Task %i finished execution." i
printfn $"Random numbers generated: {taskCtr:N0}"
printfn $"Sum of random numbers: {taskTotal:N2}"
printfn $"Random number mean: {(taskTotal / float taskCtr):N4}\n"
// Update overall totals.
totalCount <- totalCount + taskCtr
totalValue <- totalValue + taskTotal)),
token
) |]
try
// Run tasks with F# Async.
Task.WhenAll tasks
|> Async.AwaitTask
|> Async.RunSynchronously
printfn $"\nTotal random numbers generated: {totalCount:N0}"
printfn $"Total sum of all random numbers: {totalValue:N2}"
printfn $"Random number mean: {(totalValue / float totalCount):N4}"
with
| :? AggregateException as e ->
for inner in e.InnerExceptions do
match inner with
| :? TaskCanceledException as canc ->
if canc <> null then
printfn $"Task #{canc.Task.Id} cancelled"
else
printfn $"Exception: {inner.GetType().Name}"
| _ -> ()
let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()
// The example displays output like the following:
// Task 1 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,502.47
// Random number mean: 0.5003
//
// Task 0 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,445.63
// Random number mean: 0.5002
//
// Task 2 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,556.04
// Random number mean: 0.5003
//
// Task 3 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,178.87
// Random number mean: 0.5001
//
// Task 4 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,819.17
// Random number mean: 0.4999
//
// Task 5 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,190.58
// Random number mean: 0.5001
//
// Task 6 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,720.21
// Random number mean: 0.4999
//
// Task 7 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,000.96
// Random number mean: 0.4995
//
// Task 8 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,499.33
// Random number mean: 0.4997
//
// Task 9 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 1,000,193.25
// Random number mean: 0.5001
//
// Task 10 finished execution.
// Random numbers generated: 2,000,000
// Sum of random numbers: 999,960.82
// Random number mean: 0.5000
//
//
// Total random numbers generated: 22,000,000
// Total sum of all random numbers: 11,000,067.33
// Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks
Module Example16
Dim source As New CancellationTokenSource()
Dim randLock As New Object()
Dim numericLock As New Object()
Dim rand As New Random()
Dim totalValue As Double = 0.0
Dim totalCount As Integer = 0
Public Sub Main()
Dim tasks As New List(Of Task)()
For ctr As Integer = 1 To 10
Dim token As CancellationToken = source.Token
Dim taskNo As Integer = ctr
tasks.Add(Task.Run(
Sub()
Dim previous As Double = 0.0
Dim taskCtr As Integer = 0
Dim taskTotal As Double = 0.0
Dim result As Double = 0.0
For n As Integer = 1 To 2000000
' Make sure there's no corruption of Random.
token.ThrowIfCancellationRequested()
SyncLock randLock
result = rand.NextDouble()
End SyncLock
' Check for corruption of Random instance.
If result = previous AndAlso result = 0 Then
source.Cancel()
Else
previous = result
End If
taskCtr += 1
taskTotal += result
Next
' Show result.
Console.WriteLine("Task {0} finished execution.", taskNo)
Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
Console.WriteLine("Random number mean: {0:N4}", taskTotal / taskCtr)
Console.WriteLine()
' Update overall totals.
SyncLock numericLock
totalCount += taskCtr
totalValue += taskTotal
End SyncLock
End Sub, token))
Next
Try
Task.WaitAll(tasks.ToArray())
Console.WriteLine()
Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
Catch e As AggregateException
For Each inner As Exception In e.InnerExceptions
Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
If canc IsNot Nothing Then
Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
Else
Console.WriteLine("Exception: {0}", inner.GetType().Name)
End If
Next
Finally
source.Dispose()
End Try
End Sub
End Module
' The example displays output like the following:
' Task 1 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,502.47
' Random number mean: 0.5003
'
' Task 0 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,445.63
' Random number mean: 0.5002
'
' Task 2 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,556.04
' Random number mean: 0.5003
'
' Task 3 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,178.87
' Random number mean: 0.5001
'
' Task 4 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,819.17
' Random number mean: 0.4999
'
' Task 5 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,190.58
' Random number mean: 0.5001
'
' Task 6 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,720.21
' Random number mean: 0.4999
'
' Task 7 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,000.96
' Random number mean: 0.4995
'
' Task 8 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,499.33
' Random number mean: 0.4997
'
' Task 9 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 1,000,193.25
' Random number mean: 0.5001
'
' Task 10 finished execution.
' Random numbers generated: 2,000,000
' Sum of random numbers: 999,960.82
' Random number mean: 0.5000
'
'
' Total random numbers generated: 22,000,000
' Total sum of all random numbers: 11,000,067.33
' Random number mean: 0.5000
Differisce dal primo esempio nei modi seguenti:
- Le variabili da tenere traccia del numero di numeri casuali generati e della relativa somma in ogni attività sono locali per l'attività, quindi non è necessario usare l'attributo ThreadStaticAttribute .
- Il metodo statico Task.WaitAll viene usato per assicurarsi che il thread principale non venga completato prima del completamento di tutte le attività. Non è necessario per l'oggetto CountdownEvent .
- L'eccezione risultante dall'annullamento dell'attività Task.WaitAll viene visualizzata nel metodo . Nell'esempio precedente viene gestito da ogni thread.
Generare tipi diversi di numeri casuali
Il generatore di numeri casuali fornisce metodi che consentono di generare i tipi di numeri casuali seguenti:
Serie di Byte valori. Per determinare il numero di valori di byte, passare una matrice inizializzata al numero di elementi da restituire al NextBytes metodo . Nell'esempio seguente vengono generati 20 byte.
Random rnd = new Random(); Byte[] bytes = new Byte[20]; rnd.NextBytes(bytes); for (int ctr = 1; ctr <= bytes.Length; ctr++) { Console.Write("{0,3} ", bytes[ctr - 1]); if (ctr % 10 == 0) Console.WriteLine(); } // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
let rnd = Random() let bytes = Array.zeroCreate 20 rnd.NextBytes bytes for i = 1 to bytes.Length do printf "%3i " bytes.[i - 1] if (i % 10 = 0) then printfn "" // The example displays output like the following: // 141 48 189 66 134 212 211 71 161 56 // 181 166 220 133 9 252 222 57 62 62
Module Example9 Public Sub Main() Dim rnd As New Random() Dim bytes(19) As Byte rnd.NextBytes(bytes) For ctr As Integer = 1 To bytes.Length Console.Write("{0,3} ", bytes(ctr - 1)) If ctr Mod 10 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 141 48 189 66 134 212 211 71 161 56 ' 181 166 220 133 9 252 222 57 62 62
Singolo numero intero. È possibile scegliere se si desidera un numero intero compreso tra 0 e un valore massimo (Int32.MaxValue - 1) chiamando il Next() metodo , un numero intero compreso tra 0 e un valore specifico chiamando il Next(Int32) metodo o un numero intero all'interno di un intervallo di valori chiamando il Next(Int32, Int32) metodo . Negli overload con parametri il valore massimo specificato è esclusivo; ovvero, il numero massimo effettivo generato è minore del valore specificato.
Nell'esempio seguente viene chiamato il Next(Int32, Int32) metodo per generare 10 numeri casuali compresi tra -10 e 10. Si noti che il secondo argomento del metodo specifica il limite superiore esclusivo dell'intervallo di valori casuali restituiti dal metodo . In altre parole, il numero intero più grande che il metodo può restituire è uno minore di questo valore.
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,3} ", rnd.Next(-10, 11)); } // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
let rnd = Random() for i = 0 to 9 do printf "%3i " (rnd.Next(-10, 11)) // The example displays output like the following: // 2 9 -3 2 4 -7 -3 -8 -8 5
Module Example11 Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,3} ", rnd.Next(-10, 11)) Next End Sub End Module ' The example displays output like the following: ' 2 9 -3 2 4 -7 -3 -8 -8 5
Valore a virgola mobile singolo compreso tra 0,0 e minore di 1,0 chiamando il NextDouble metodo . Il limite superiore esclusivo del numero casuale restituito dal metodo è 1, quindi il limite superiore effettivo è 0,99999999999999999978. L'esempio seguente genera 10 numeri a virgola mobile casuali.
Random rnd = new Random(); for (int ctr = 0; ctr < 10; ctr++) { Console.Write("{0,-19:R} ", rnd.NextDouble()); if ((ctr + 1) % 3 == 0) Console.WriteLine(); } // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
let rnd = Random() for i = 0 to 9 do printf $"{rnd.NextDouble(),-19:R} " if (i + 1) % 3 = 0 then printfn "" // The example displays output like the following: // 0.7911680553998649 0.0903414949264105 0.79776258291572455 // 0.615568345233597 0.652644504165577 0.84023809378977776 // 0.099662564741290441 0.91341467383942321 0.96018602045261581 // 0.74772306473354022
Module Example10 Public Sub Main() Dim rnd As New Random() For ctr As Integer = 0 To 9 Console.Write("{0,-19:R} ", rnd.NextDouble()) If (ctr + 1) Mod 3 = 0 Then Console.WriteLine() Next End Sub End Module ' The example displays output like the following: ' 0.7911680553998649 0.0903414949264105 0.79776258291572455 ' 0.615568345233597 0.652644504165577 0.84023809378977776 ' 0.099662564741290441 0.91341467383942321 0.96018602045261581 ' 0.74772306473354022
Importante
Il Next(Int32, Int32) metodo consente di specificare l'intervallo del numero casuale restituito. Tuttavia, il maxValue
parametro , che specifica l'intervallo superiore restituito numero, è un valore esclusivo, non inclusivo. Ciò significa che la chiamata Next(0, 100)
al metodo restituisce un valore compreso tra 0 e 99 e non compreso tra 0 e 100.
È anche possibile usare la Random classe per attività come la generazione di valori booleani casuali, la generazione di valori a virgola mobile casuale in un intervallo specificato, la generazione di interi casuali a 64 bit e il recupero di un elemento univoco da una matrice o da una raccolta.
Sostituire il proprio algoritmo
È possibile implementare il proprio generatore di numeri casuali ereditando dalla Random classe e fornendo l'algoritmo di generazione di numeri casuali. Per fornire un algoritmo personalizzato, è necessario eseguire l'override del Sample metodo , che implementa l'algoritmo di generazione di numeri casuali. È anche necessario eseguire l'override dei Next()metodi , Next(Int32, Int32)e NextBytes per assicurarsi che chiamino il metodo sottoposto Sample a override. Non è necessario eseguire l'override dei Next(Int32) metodi e NextDouble .
Per un esempio che deriva dalla classe e modifica il Random relativo generatore di numeri pseudo-casuali predefinito, vedere la pagina di Sample riferimento.
Recuperare la stessa sequenza di valori casuali
A volte vuoi generare la stessa sequenza di numeri casuali negli scenari di test software e nel gioco. Il test con la stessa sequenza di numeri casuali consente di rilevare le regressioni e confermare le correzioni di bug. L'uso della stessa sequenza di numeri casuali nei giochi consente di riprodurre i giochi precedenti.
È possibile generare la stessa sequenza di numeri casuali fornendo lo stesso valore di inizializzazione al Random(Int32) costruttore. Il valore di inizializzazione fornisce un valore iniziale per l'algoritmo di generazione di numeri pseudo-casuali. Nell'esempio seguente viene utilizzato 100100 come valore di inizializzazione arbitrario per creare un'istanza dell'oggetto Random , vengono visualizzati 20 valori a virgola mobile casuali e viene mantenuto il valore di inizializzazione. Ripristina quindi il valore di inizializzazione, crea un'istanza di un nuovo generatore di numeri casuali e visualizza gli stessi 20 valori a virgola mobile casuale. Si noti che l'esempio può produrre sequenze diverse di numeri casuali se eseguite in versioni diverse di .NET.
using System;
using System.IO;
public class Example12
{
public static void Main()
{
int seed = 100100;
ShowRandomNumbers(seed);
Console.WriteLine();
PersistSeed(seed);
DisplayNewRandomNumbers();
}
private static void ShowRandomNumbers(int seed)
{
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
private static void PersistSeed(int seed)
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
BinaryWriter bin = new BinaryWriter(fs);
bin.Write(seed);
bin.Close();
}
private static void DisplayNewRandomNumbers()
{
FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
BinaryReader bin = new BinaryReader(fs);
int seed = bin.ReadInt32();
bin.Close();
Random rnd = new Random(seed);
for (int ctr = 0; ctr <= 20; ctr++)
Console.WriteLine(rnd.NextDouble());
}
}
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
open System
open System.IO
let showRandomNumbers seed =
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let persistSeed (seed: int) =
use bin = new BinaryWriter(new FileStream(@".\seed.dat", FileMode.Create))
bin.Write seed
let displayNewRandomNumbers () =
use bin = new BinaryReader(new FileStream(@".\seed.dat", FileMode.Open))
let seed = bin.ReadInt32()
let rnd = Random seed
for _ = 0 to 20 do
printfn $"{rnd.NextDouble()}"
let seed = 100100
showRandomNumbers seed
printfn ""
persistSeed seed
displayNewRandomNumbers ()
// The example displays output like the following:
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
//
// 0.500193602172748
// 0.0209461245783354
// 0.465869495396442
// 0.195512794514891
// 0.928583675496552
// 0.729333720509584
// 0.381455668891527
// 0.0508996467343064
// 0.019261200921266
// 0.258578445417145
// 0.0177532266908107
// 0.983277184415272
// 0.483650274334313
// 0.0219647376900375
// 0.165910115077118
// 0.572085966622497
// 0.805291457942357
// 0.927985211335116
// 0.4228545699375
// 0.523320379910674
// 0.157783938645285
Imports System.IO
Module Example14
Public Sub Main()
Dim seed As Integer = 100100
ShowRandomNumbers(seed)
Console.WriteLine()
PersistSeed(seed)
DisplayNewRandomNumbers()
End Sub
Private Sub ShowRandomNumbers(seed As Integer)
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
Private Sub PersistSeed(seed As Integer)
Dim fs As New FileStream(".\seed.dat", FileMode.Create)
Dim bin As New BinaryWriter(fs)
bin.Write(seed)
bin.Close()
End Sub
Private Sub DisplayNewRandomNumbers()
Dim fs As New FileStream(".\seed.dat", FileMode.Open)
Dim bin As New BinaryReader(fs)
Dim seed As Integer = bin.ReadInt32()
bin.Close()
Dim rnd As New Random(seed)
For ctr As Integer = 0 To 20
Console.WriteLine(rnd.NextDouble())
Next
End Sub
End Module
' The example displays output like the following:
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
'
' 0.500193602172748
' 0.0209461245783354
' 0.465869495396442
' 0.195512794514891
' 0.928583675496552
' 0.729333720509584
' 0.381455668891527
' 0.0508996467343064
' 0.019261200921266
' 0.258578445417145
' 0.0177532266908107
' 0.983277184415272
' 0.483650274334313
' 0.0219647376900375
' 0.165910115077118
' 0.572085966622497
' 0.805291457942357
' 0.927985211335116
' 0.4228545699375
' 0.523320379910674
' 0.157783938645285
Recuperare sequenze univoche di numeri casuali
Se si specificano valori di inizializzazione diversi alle istanze della Random classe, ogni generatore di numeri casuali genera una sequenza di valori diversa. È possibile fornire un valore di inizializzazione in modo esplicito chiamando il Random(Int32) costruttore o in modo implicito chiamando il Random() costruttore. La maggior parte degli sviluppatori chiama il costruttore senza parametri, che usa l'orologio di sistema. Nell'esempio seguente viene usato questo approccio per creare un'istanza di due Random istanze. Ogni istanza visualizza una serie di 10 numeri interi casuali.
using System;
using System.Threading;
public class Example16
{
public static void Main()
{
Console.WriteLine("Instantiating two random number generators...");
Random rnd1 = new Random();
Thread.Sleep(2000);
Random rnd2 = new Random();
Console.WriteLine("\nThe first random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd1.Next());
Console.WriteLine("\nThe second random number generator:");
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(" {0}", rnd2.Next());
}
}
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
open System
open System.Threading
printfn "Instantiating two random number generators..."
let rnd1 = Random()
Thread.Sleep 2000
let rnd2 = Random()
printfn "\nThe first random number generator:"
for _ = 1 to 10 do
printfn $" {rnd1.Next()}"
printfn "\nThe second random number generator:"
for _ = 1 to 10 do
printfn $" {rnd2.Next()}"
// The example displays output like the following:
// Instantiating two random number generators...
//
// The first random number generator:
// 643164361
// 1606571630
// 1725607587
// 2138048432
// 496874898
// 1969147632
// 2034533749
// 1840964542
// 412380298
// 47518930
//
// The second random number generator:
// 1251659083
// 1514185439
// 1465798544
// 517841554
// 1821920222
// 195154223
// 1538948391
// 1548375095
// 546062716
// 897797880
Imports System.Threading
Module Example17
Public Sub Main()
Console.WriteLine("Instantiating two random number generators...")
Dim rnd1 As New Random()
Thread.Sleep(2000)
Dim rnd2 As New Random()
Console.WriteLine()
Console.WriteLine("The first random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd1.Next())
Next
Console.WriteLine()
Console.WriteLine("The second random number generator:")
For ctr As Integer = 1 To 10
Console.WriteLine(" {0}", rnd2.Next())
Next
End Sub
End Module
' The example displays output like the following:
' Instantiating two random number generators...
'
' The first random number generator:
' 643164361
' 1606571630
' 1725607587
' 2138048432
' 496874898
' 1969147632
' 2034533749
' 1840964542
' 412380298
' 47518930
'
' The second random number generator:
' 1251659083
' 1514185439
' 1465798544
' 517841554
' 1821920222
' 195154223
' 1538948391
' 1548375095
' 546062716
' 897797880
Tuttavia, a causa della risoluzione limitata, l'orologio di sistema non rileva le differenze di tempo inferiori a circa 15 millisecondi. Pertanto, se il codice chiama l'overload in .NET Framework per creare un'istanza Random() di due Random oggetti in successione, potrebbe inavvertitamente fornire agli oggetti valori di inizializzazione identici. La Random classe in .NET Core non presenta questa limitazione. Per visualizzarla nell'esempio precedente, impostare come commento la chiamata al Thread.Sleep metodo e compilare ed eseguire di nuovo l'esempio.
Per evitare che ciò accada, è consigliabile creare un'istanza di un singolo Random oggetto anziché di più oggetti. Tuttavia, poiché Random non è thread-safe, è necessario usare un dispositivo di sincronizzazione se si accede a un'istanza Random da più thread. Per altre informazioni, vedere la sezione Thread safety . In alternativa, è possibile usare un meccanismo di ritardo, ad esempio il Sleep metodo usato nell'esempio precedente, per assicurarsi che le istanze si verifichino più di 15 millisecondi.
Recuperare numeri interi in un intervallo specificato
È possibile recuperare numeri interi in un intervallo specificato chiamando il Next(Int32, Int32) metodo , che consente di specificare sia il limite inferiore che quello superiore dei numeri che si desidera restituire dal generatore di numeri casuali. Il limite superiore è un valore esclusivo, non inclusivo. Ovvero, non è incluso nell'intervallo di valori restituiti dal metodo . Nell'esempio seguente viene usato questo metodo per generare numeri interi casuali compresi tra -10 e 10. Si noti che specifica 11, ovvero un valore maggiore del valore desiderato, come valore dell'argomento maxValue
nella chiamata al metodo.
Random rnd = new Random();
for (int ctr = 1; ctr <= 15; ctr++)
{
Console.Write("{0,3} ", rnd.Next(-10, 11));
if (ctr % 5 == 0) Console.WriteLine();
}
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
let rnd = Random()
for i = 1 to 15 do
printf "%3i " (rnd.Next(-10, 11))
if i % 5 = 0 then printfn ""
// The example displays output like the following:
// -2 -5 -1 -2 10
// -3 6 -4 -8 3
// -7 10 5 -2 4
Module Example12
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 15
Console.Write("{0,3} ", rnd.Next(-10, 11))
If ctr Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' -2 -5 -1 -2 10
' -3 6 -4 -8 3
' -7 10 5 -2 4
Recuperare numeri interi con un numero specificato di cifre
È possibile chiamare il Next(Int32, Int32) metodo per recuperare i numeri con un numero specificato di cifre. Ad esempio, per recuperare numeri con quattro cifre (ovvero numeri compresi tra 1000 e 9999), chiamare il Next(Int32, Int32) metodo con un minValue
valore pari a 1000 e un maxValue
valore pari a 10000, come illustrato nell'esempio seguente.
Random rnd = new Random();
for (int ctr = 1; ctr <= 50; ctr++)
{
Console.Write("{0,3} ", rnd.Next(1000, 10000));
if (ctr % 10 == 0) Console.WriteLine();
}
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
let rnd = Random()
for i = 1 to 50 do
printf "%3i " (rnd.Next(1000, 10000))
if i % 10 = 0 then printfn ""
// The example displays output like the following:
// 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
// 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
// 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
// 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
// 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Module Example13
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 50
Console.Write("{0,3} ", rnd.Next(1000, 10000))
If ctr Mod 10 = 0 Then Console.WriteLine()
Next
End Sub
End Module
' The example displays output like the following:
' 9570 8979 5770 1606 3818 4735 8495 7196 7070 2313
' 5279 6577 5104 5734 4227 3373 7376 6007 8193 5540
' 7558 3934 3819 7392 1113 7191 6947 4963 9179 7907
' 3391 6667 7269 1838 7317 1981 5154 7377 3297 5320
' 9869 8694 2684 4949 2999 3019 2357 5211 9604 2593
Recuperare i valori a virgola mobile in un intervallo specificato
Il NextDouble metodo restituisce valori a virgola mobile casuali compresi tra 0 e 1. Tuttavia, spesso si vogliono generare valori casuali in un altro intervallo.
Se l'intervallo tra i valori minimo e massimo desiderato è 1, è possibile aggiungere la differenza tra l'intervallo iniziale desiderato e 0 al numero restituito dal NextDouble metodo . L'esempio seguente esegue questa operazione per generare 10 numeri casuali compresi tra -1 e 0.
Random rnd = new Random();
for (int ctr = 1; ctr <= 10; ctr++)
Console.WriteLine(rnd.NextDouble() - 1);
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
let rnd = Random()
for _ = 1 to 10 do
printfn "%O" (rnd.NextDouble() - 1.0)
// The example displays output like the following:
// -0.930412760437658
// -0.164699016215605
// -0.9851692803135
// -0.43468508843085
// -0.177202483255976
// -0.776813320245972
// -0.0713201854710096
// -0.0912875561468711
// -0.540621722368813
// -0.232211863730201
Module Example6
Public Sub Main()
Dim rnd As New Random()
For ctr As Integer = 1 To 10
Console.WriteLine(rnd.NextDouble() - 1)
Next
End Sub
End Module
' The example displays output like the following:
' -0.930412760437658
' -0.164699016215605
' -0.9851692803135
' -0.43468508843085
' -0.177202483255976
' -0.776813320245972
' -0.0713201854710096
' -0.0912875561468711
' -0.540621722368813
' -0.232211863730201
Per generare numeri a virgola mobile casuale il cui limite inferiore è 0, ma il limite superiore è maggiore di 1 (o, nel caso di numeri negativi, il cui limite inferiore è minore di -1 e il limite superiore è 0), moltiplicare il numero casuale per il limite diverso da zero. Nell'esempio seguente viene eseguita questa operazione per generare 20 milioni di numeri a virgola mobile casuali compresi tra 0 e Int64.MaxValue. In visualizza anche la distribuzione dei valori casuali generati dal metodo .
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
double number;
int[] count = new int[10];
// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
number = rnd.NextDouble() * Int64.MaxValue;
// Categorize random numbers into 10 groups.
count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr] / 20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
// Generate 20 million random integers.
let count =
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) )
|> Array.countBy (fun x -> x / (float ONE_TENTH) |> int ) // Categorize into 10 groups and count them.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example5
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million integer values.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr) / 20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Per generare numeri a virgola mobile casuali tra due valori arbitrari, ad esempio il Next(Int32, Int32) metodo per i numeri interi, usare la formula seguente:
Random.NextDouble() * (maxValue - minValue) + minValue
L'esempio seguente genera 1 milione di numeri casuali compresi tra 10,0 e 11,0 e ne visualizza la distribuzione.
Random rnd = new Random();
int lowerBound = 10;
int upperBound = 11;
int[] range = new int[10];
for (int ctr = 1; ctr <= 1000000; ctr++)
{
Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
range[(int)Math.Truncate((value - lowerBound) * 10)]++;
}
for (int ctr = 0; ctr <= 9; ctr++)
{
Double lowerRange = 10 + ctr * .1;
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + .1, range[ctr],
range[ctr] / 1000000.0);
}
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
let rnd = Random()
let lowerBound = 10.0
let upperBound = 11.0
let range =
Array.init 1000000 (fun _ -> rnd.NextDouble() * (upperBound - lowerBound) + lowerBound)
|> Array.countBy (fun x -> Math.Truncate((x - lowerBound) * 10.0) |> int)
|> Array.map snd
for i = 0 to 9 do
let lowerRange = 10.0 + float i * 0.1
printfn $"{lowerRange:N1} to {lowerRange + 0.1:N1}: {range.[i],8:N0} ({float range.[i] / 1000000.0,6:P2})"
// The example displays output like the following:
// 10.0 to 10.1: 99,929 ( 9.99 %)
// 10.1 to 10.2: 100,189 (10.02 %)
// 10.2 to 10.3: 99,384 ( 9.94 %)
// 10.3 to 10.4: 100,240 (10.02 %)
// 10.4 to 10.5: 99,397 ( 9.94 %)
// 10.5 to 10.6: 100,580 (10.06 %)
// 10.6 to 10.7: 100,293 (10.03 %)
// 10.7 to 10.8: 100,135 (10.01 %)
// 10.8 to 10.9: 99,905 ( 9.99 %)
// 10.9 to 11.0: 99,948 ( 9.99 %)
Module Example7
Public Sub Main()
Dim rnd As New Random()
Dim lowerBound As Integer = 10
Dim upperBound As Integer = 11
Dim range(9) As Integer
For ctr As Integer = 1 To 1000000
Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1
Next
For ctr As Integer = 0 To 9
Dim lowerRange As Double = 10 + ctr * 0.1
Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0} ({3,7:P2})",
lowerRange, lowerRange + 0.1, range(ctr),
range(ctr) / 1000000.0)
Next
End Sub
End Module
' The example displays output like the following:
' 10.0 to 10.1: 99,929 ( 9.99 %)
' 10.1 to 10.2: 100,189 (10.02 %)
' 10.2 to 10.3: 99,384 ( 9.94 %)
' 10.3 to 10.4: 100,240 (10.02 %)
' 10.4 to 10.5: 99,397 ( 9.94 %)
' 10.5 to 10.6: 100,580 (10.06 %)
' 10.6 to 10.7: 100,293 (10.03 %)
' 10.7 to 10.8: 100,135 (10.01 %)
' 10.8 to 10.9: 99,905 ( 9.99 %)
' 10.9 to 11.0: 99,948 ( 9.99 %)
Generare valori booleani casuali
La Random classe non fornisce metodi che generano Boolean valori. Tuttavia, è possibile definire una classe o un metodo personalizzato per eseguire questa operazione. Nell'esempio seguente viene definita una classe , BooleanGenerator
, con un singolo metodo , NextBoolean
. La BooleanGenerator
classe archivia un Random oggetto come variabile privata. Il NextBoolean
metodo chiama il Random.Next(Int32, Int32) metodo e passa il risultato al Convert.ToBoolean(Int32) metodo . Si noti che 2 viene usato come argomento per specificare il limite superiore del numero casuale. Poiché si tratta di un valore esclusivo, la chiamata al metodo restituisce 0 o 1.
using System;
public class Example1
{
public static void Main()
{
// Instantiate the Boolean generator.
BooleanGenerator boolGen = new BooleanGenerator();
int totalTrue = 0, totalFalse = 0;
// Generate 1,0000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
bool value = boolGen.NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double)totalFalse) / (totalTrue + totalFalse));
}
}
public class BooleanGenerator
{
Random rnd;
public BooleanGenerator()
{
rnd = new Random();
}
public bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
}
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
open System
type BooleanGenerator() =
let rnd = Random()
member _.NextBoolean() =
rnd.Next(0, 2) = 1
let boolGen = BooleanGenerator()
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = boolGen.NextBoolean()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 500,004 (50.000 %)
// Number of false values: 499,996 (50.000 %)
Module Example2
Public Sub Main()
' Instantiate the Boolean generator.
Dim boolGen As New BooleanGenerator()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = boolGen.NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue / (totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse / (totalTrue + totalFalse))
End Sub
End Module
Public Class BooleanGenerator
Dim rnd As Random
Public Sub New()
rnd = New Random()
End Sub
Public Function NextBoolean() As Boolean
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Class
' The example displays the following output:
' Number of true values: 500,004 (50.000 %)
' Number of false values: 499,996 (50.000 %)
Anziché creare una classe separata per generare valori casuali Boolean , l'esempio potrebbe semplicemente avere definito un singolo metodo. In tal caso, tuttavia, l'oggetto Random deve essere stato definito come variabile a livello di classe per evitare di creare un'istanza di una nuova Random istanza in ogni chiamata al metodo. In Visual Basic l'istanza Casuale può essere definita come variabile statica nel NextBoolean
metodo . Nell'esempio seguente viene fornita un'implementazione.
Random rnd = new Random();
int totalTrue = 0, totalFalse = 0;
// Generate 1,000,000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
bool value = NextBoolean();
if (value)
totalTrue++;
else
totalFalse++;
}
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
((double)totalFalse) / (totalTrue + totalFalse));
bool NextBoolean()
{
return rnd.Next(0, 2) == 1;
}
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
let rnd = Random()
let nextBool () =
rnd.Next(0, 2) = 1
let mutable totalTrue, totalFalse = 0, 0
for _ = 1 to 1000000 do
let value = nextBool ()
if value then
totalTrue <- totalTrue + 1
else
totalFalse <- totalFalse + 1
printfn $"Number of true values: {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"
// The example displays output like the following:
// Number of true values: 499,777 (49.978 %)
// Number of false values: 500,223 (50.022 %)
Module Example3
Public Sub Main()
Dim totalTrue, totalFalse As Integer
' Generate 1,0000 random Booleans, and keep a running total.
For ctr As Integer = 0 To 9999999
Dim value As Boolean = NextBoolean()
If value Then
totalTrue += 1
Else
totalFalse += 1
End If
Next
Console.WriteLine("Number of true values: {0,7:N0} ({1:P3})",
totalTrue,
totalTrue / (totalTrue + totalFalse))
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
totalFalse,
totalFalse / (totalTrue + totalFalse))
End Sub
Public Function NextBoolean() As Boolean
Static rnd As New Random()
Return Convert.ToBoolean(rnd.Next(0, 2))
End Function
End Module
' The example displays the following output:
' Number of true values: 499,777 (49.978 %)
' Number of false values: 500,223 (50.022 %)
Generare interi casuali a 64 bit
Gli overload del Next metodo restituiscono interi a 32 bit. In alcuni casi, tuttavia, è possibile usare numeri interi a 64 bit. Procedere come segue:
Chiamare il NextDouble metodo per recuperare un valore a virgola mobile e precisione doppia.
Moltiplicare il valore per Int64.MaxValue.
L'esempio seguente usa questa tecnica per generare 20 milioni di numeri interi lunghi casuali e li classifica in 10 gruppi uguali. Valuta quindi la distribuzione dei numeri casuali conteggiando il numero in ogni gruppo da 0 a Int64.MaxValue. Come illustrato nell'output dell'esempio, i numeri vengono distribuiti più o meno equamente attraverso l'intervallo di un numero intero lungo.
const long ONE_TENTH = 922337203685477581;
Random rnd = new Random();
long number;
int[] count = new int[10];
// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
number = (long)(rnd.NextDouble() * Int64.MaxValue);
// Categorize random numbers.
count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
count[ctr], count[ctr] / 20000000.0);
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L
let rnd = Random()
let count =
// Generate 20 million random long integers.
Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) |> int64 )
|> Array.countBy (fun x -> x / ONE_TENTH) // Categorize and count random numbers.
|> Array.map snd
// Display breakdown by range.
printfn "%28s %32s %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
let r1 = int64 i * ONE_TENTH
let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
printfn $"{r1,25:N0}-{r2,25:N0} {count.[i],8:N0} {float count.[i] / 20000000.0,7:P2}"
// The example displays output like the following:
// Range Count Pct.
//
// 0- 922,337,203,685,477,580 1,996,148 9.98 %
// 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
// 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
// 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
// 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
// 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
// 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
// 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
// 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
// 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Module Example8
Public Sub Main()
Const ONE_TENTH As Long = 922337203685477581
Dim rnd As New Random()
Dim number As Long
Dim count(9) As Integer
' Generate 20 million long integers.
For ctr As Integer = 1 To 20000000
number = CLng(rnd.NextDouble() * Int64.MaxValue)
' Categorize random numbers.
count(CInt(number \ ONE_TENTH)) += 1
Next
' Display breakdown by range.
Console.WriteLine("{0,28} {1,32} {2,7}", "Range", "Count", "Pct.")
Console.WriteLine()
For ctr As Integer = 0 To 9
Console.WriteLine("{0,25:N0}-{1,25:N0} {2,8:N0} {3,7:P2}", ctr * ONE_TENTH,
If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
count(ctr), count(ctr) / 20000000)
Next
End Sub
End Module
' The example displays output like the following:
' Range Count Pct.
'
' 0- 922,337,203,685,477,580 1,996,148 9.98 %
' 922,337,203,685,477,581-1,844,674,407,370,955,161 2,000,293 10.00 %
' 1,844,674,407,370,955,162-2,767,011,611,056,432,742 2,000,094 10.00 %
' 2,767,011,611,056,432,743-3,689,348,814,741,910,323 2,000,159 10.00 %
' 3,689,348,814,741,910,324-4,611,686,018,427,387,904 1,999,552 10.00 %
' 4,611,686,018,427,387,905-5,534,023,222,112,865,485 1,998,248 9.99 %
' 5,534,023,222,112,865,486-6,456,360,425,798,343,066 2,000,696 10.00 %
' 6,456,360,425,798,343,067-7,378,697,629,483,820,647 2,001,637 10.01 %
' 7,378,697,629,483,820,648-8,301,034,833,169,298,228 2,002,870 10.01 %
' 8,301,034,833,169,298,229-9,223,372,036,854,775,807 2,000,303 10.00 %
Una tecnica alternativa che usa la manipolazione dei bit non genera numeri realmente casuali. Questa tecnica chiama Next() per generare due numeri interi, sposta a sinistra uno per 32 bit e gli ORS insieme. Questa tecnica presenta due limitazioni:
Poiché bit 31 è il bit del segno, il valore in bit 31 dell'intero lungo risultante è sempre 0. Questo problema può essere risolto generando un valore casuale 0 o 1, spostandolo a sinistra a 31 bit e ORing con l'intero lungo casuale originale.
Più seriamente, perché la probabilità che il valore restituito da Next() sarà 0, ci saranno pochi se qualsiasi numero casuale nell'intervallo 0x0-0x00000000FFFFFFFF.
Recuperare byte in un intervallo specificato
Gli overload del Next metodo consentono di specificare l'intervallo di numeri casuali, ma il NextBytes metodo non lo fa. Nell'esempio seguente viene implementato un NextBytes
metodo che consente di specificare l'intervallo dei byte restituiti. Definisce una Random2
classe che deriva da Random e ne esegue l'overload NextBytes
.
using System;
public class Example3
{
public static void Main()
{
Random2 rnd = new Random2();
Byte[] bytes = new Byte[10000];
int[] total = new int[101];
rnd.NextBytes(bytes, 0, 101);
// Calculate how many of each value we have.
foreach (var value in bytes)
total[value]++;
// Display the results.
for (int ctr = 0; ctr < total.Length; ctr++)
{
Console.Write("{0,3}: {1,-3} ", ctr, total[ctr]);
if ((ctr + 1) % 5 == 0) Console.WriteLine();
}
}
}
public class Random2 : Random
{
public Random2() : base()
{ }
public Random2(int seed) : base(seed)
{ }
public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
{
for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
bytes[ctr] = (byte)Next(minValue, maxValue);
}
}
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
open System
type Random2() =
inherit Random()
member this.NextBytes(bytes: byte[], minValue: byte, maxValue: byte) =
for i=bytes.GetLowerBound(0) to bytes.GetUpperBound(0) do
bytes.[i] <- this.Next(int minValue, int maxValue) |> byte
let rnd = Random2()
let bytes = Array.zeroCreate 10000
let total = Array.zeroCreate 101
rnd.NextBytes(bytes, 0uy, 101uy)
// Calculate how many of each value we have.
for v in bytes do
total.[int v] <- total.[int v] + 1
// Display the results.
for i = 0 to total.Length - 1 do
printf "%3i: %-3i " i total.[i]
if (i + 1) % 5 = 0 then printfn ""
// The example displays output like the following:
// 0: 115 1: 119 2: 92 3: 98 4: 92
// 5: 102 6: 103 7: 84 8: 93 9: 116
// 10: 91 11: 98 12: 106 13: 91 14: 92
// 15: 101 16: 100 17: 96 18: 97 19: 100
// 20: 101 21: 106 22: 112 23: 82 24: 85
// 25: 102 26: 107 27: 98 28: 106 29: 102
// 30: 109 31: 108 32: 94 33: 101 34: 107
// 35: 101 36: 86 37: 100 38: 101 39: 102
// 40: 113 41: 95 42: 96 43: 89 44: 99
// 45: 81 46: 89 47: 105 48: 100 49: 85
// 50: 103 51: 103 52: 93 53: 89 54: 91
// 55: 97 56: 105 57: 97 58: 110 59: 86
// 60: 116 61: 94 62: 117 63: 98 64: 110
// 65: 93 66: 102 67: 100 68: 105 69: 83
// 70: 81 71: 97 72: 85 73: 70 74: 98
// 75: 100 76: 110 77: 114 78: 83 79: 90
// 80: 96 81: 112 82: 102 83: 102 84: 99
// 85: 81 86: 100 87: 93 88: 99 89: 118
// 90: 95 91: 124 92: 108 93: 96 94: 104
// 95: 106 96: 99 97: 99 98: 92 99: 99
// 100: 108
Module Example4
Public Sub Main()
Dim rnd As New Random2()
Dim bytes(9999) As Byte
Dim total(100) As Integer
rnd.NextBytes(bytes, 0, 101)
' Calculate how many of each value we have.
For Each value In bytes
total(value) += 1
Next
' Display the results.
For ctr As Integer = 0 To total.Length - 1
Console.Write("{0,3}: {1,-3} ", ctr, total(ctr))
If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
Next
End Sub
End Module
Public Class Random2 : Inherits Random
Public Sub New()
MyBase.New()
End Sub
Public Sub New(seed As Integer)
MyBase.New(seed)
End Sub
Public Overloads Sub NextBytes(bytes() As Byte,
minValue As Byte, maxValue As Byte)
For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
Next
End Sub
End Class
' The example displays output like the following:
' 0: 115 1: 119 2: 92 3: 98 4: 92
' 5: 102 6: 103 7: 84 8: 93 9: 116
' 10: 91 11: 98 12: 106 13: 91 14: 92
' 15: 101 16: 100 17: 96 18: 97 19: 100
' 20: 101 21: 106 22: 112 23: 82 24: 85
' 25: 102 26: 107 27: 98 28: 106 29: 102
' 30: 109 31: 108 32: 94 33: 101 34: 107
' 35: 101 36: 86 37: 100 38: 101 39: 102
' 40: 113 41: 95 42: 96 43: 89 44: 99
' 45: 81 46: 89 47: 105 48: 100 49: 85
' 50: 103 51: 103 52: 93 53: 89 54: 91
' 55: 97 56: 105 57: 97 58: 110 59: 86
' 60: 116 61: 94 62: 117 63: 98 64: 110
' 65: 93 66: 102 67: 100 68: 105 69: 83
' 70: 81 71: 97 72: 85 73: 70 74: 98
' 75: 100 76: 110 77: 114 78: 83 79: 90
' 80: 96 81: 112 82: 102 83: 102 84: 99
' 85: 81 86: 100 87: 93 88: 99 89: 118
' 90: 95 91: 124 92: 108 93: 96 94: 104
' 95: 106 96: 99 97: 99 98: 92 99: 99
' 100: 108
Il NextBytes(Byte[], Byte, Byte)
metodo esegue il wrapping di una chiamata al Next(Int32, Int32) metodo e specifica il valore minimo e uno maggiore del valore massimo (in questo caso, 0 e 101) che si desidera restituire nella matrice di byte. Poiché si è certi che i valori integer restituiti dal Next metodo si trovino all'interno dell'intervallo del Byte tipo di dati, è possibile eseguirne il cast sicuro (in C# e F#) o convertirli (in Visual Basic) da interi a byte.
Recuperare un elemento da una matrice o una raccolta in modo casuale
I numeri casuali vengono spesso usati come indici per recuperare valori da matrici o raccolte. Per recuperare un valore di indice casuale, è possibile chiamare il Next(Int32, Int32) metodo e usare il limite inferiore della matrice come valore dell'argomento minValue
e uno maggiore del limite superiore della matrice come valore del relativo maxValue
argomento. Per una matrice in base zero, equivale alla relativa Length proprietà o a un valore maggiore del valore restituito dal Array.GetUpperBound metodo . Nell'esempio seguente viene recuperato in modo casuale il nome di una città nel Stati Uniti da una matrice di città.
String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington" };
Random rnd = new Random();
int index = rnd.Next(0, cities.Length);
Console.WriteLine("Today's city of the day: {0}",
cities[index]);
// The example displays output like the following:
// Today's city of the day: Honolulu
let cities =
[| "Atlanta"; "Boston"; "Chicago"; "Detroit";
"Fort Wayne"; "Greensboro"; "Honolulu"; "Indianapolis";
"Jersey City"; "Kansas City"; "Los Angeles";
"Milwaukee"; "New York"; "Omaha"; "Philadelphia";
"Raleigh"; "San Francisco"; "Tulsa"; "Washington" |]
let rnd = Random()
let index = rnd.Next(0,cities.Length)
printfn "Today's city of the day: %s" cities.[index]
// The example displays output like the following:
// Today's city of the day: Honolulu
Module Example1
Public Sub Main()
Dim cities() As String = {"Atlanta", "Boston", "Chicago", "Detroit",
"Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
"Jersey City", "Kansas City", "Los Angeles",
"Milwaukee", "New York", "Omaha", "Philadelphia",
"Raleigh", "San Francisco", "Tulsa", "Washington"}
Dim rnd As New Random()
Dim index As Integer = rnd.Next(0, cities.Length)
Console.WriteLine("Today's city of the day: {0}",
cities(index))
End Sub
End Module
' The example displays output like the following:
' Today's city of the day: Honolulu
Recuperare un elemento univoco da una matrice o da una raccolta
Un generatore di numeri casuali può sempre restituire valori duplicati. Man mano che l'intervallo di numeri diventa più piccolo o il numero di valori generati diventa più grande, aumenta la probabilità di duplicati. Se i valori casuali devono essere univoci, vengono generati più numeri per compensare i duplicati, causando prestazioni sempre più scarse.
Esistono diverse tecniche per gestire questo scenario. Una soluzione comune consiste nel creare una matrice o una raccolta contenente i valori da recuperare e una matrice parallela che contiene numeri a virgola mobile casuali. La seconda matrice viene popolata con numeri casuali al momento della creazione della prima matrice e il Array.Sort(Array, Array) metodo viene usato per ordinare la prima matrice usando i valori nella matrice parallela.
Ad esempio, se stai sviluppando un gioco solitario, vuoi assicurarti che ogni carta venga usata una sola volta. Invece di generare numeri casuali per recuperare una carta e tenere traccia del fatto che tale carta sia già stata distribuita, è possibile creare una matrice parallela di numeri casuali che possono essere utilizzati per ordinare il mazzo. Una volta ordinato il mazzo, l'app può mantenere un puntatore per indicare l'indice della carta successiva nel mazzo.
Questo approccio viene illustrato nell'esempio seguente: Definisce una Card
classe che rappresenta una carta da gioco e una Dealer
classe che gestisce un mazzo di carte casuali. Il Dealer
costruttore della classe popola due matrici: una deck
matrice con ambito di classe e che rappresenta tutte le schede nel mazzo e una matrice locale order
con lo stesso numero di elementi della deck
matrice e viene popolata con valori generati Double in modo casuale. Viene Array.Sort(Array, Array) quindi chiamato il metodo per ordinare la deck
matrice in base ai valori nella order
matrice.
using System;
// A class that represents an individual card in a playing deck.
public class Card
{
public Suit Suit;
public FaceValue FaceValue;
public override String ToString()
{
return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
}
}
public enum Suit { Hearts, Diamonds, Spades, Clubs };
public enum FaceValue
{
Ace = 1, Two, Three, Four, Five, Six,
Seven, Eight, Nine, Ten, Jack, Queen,
King
};
public class Dealer
{
Random rnd;
// A deck of cards, without Jokers.
Card[] deck = new Card[52];
// Parallel array for sorting cards.
Double[] order = new Double[52];
// A pointer to the next card to deal.
int ptr = 0;
// A flag to indicate the deck is used.
bool mustReshuffle = false;
public Dealer()
{
rnd = new Random();
// Initialize the deck.
int deckCtr = 0;
foreach (var suit in Enum.GetValues(typeof(Suit)))
{
foreach (var faceValue in Enum.GetValues(typeof(FaceValue)))
{
Card card = new Card();
card.Suit = (Suit)suit;
card.FaceValue = (FaceValue)faceValue;
deck[deckCtr] = card;
deckCtr++;
}
}
for (int ctr = 0; ctr < order.Length; ctr++)
order[ctr] = rnd.NextDouble();
Array.Sort(order, deck);
}
public Card[] Deal(int numberToDeal)
{
if (mustReshuffle)
{
Console.WriteLine("There are no cards left in the deck");
return null;
}
Card[] cardsDealt = new Card[numberToDeal];
for (int ctr = 0; ctr < numberToDeal; ctr++)
{
cardsDealt[ctr] = deck[ptr];
ptr++;
if (ptr == deck.Length)
mustReshuffle = true;
if (mustReshuffle & ctr < numberToDeal - 1)
{
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1);
return cardsDealt;
}
}
return cardsDealt;
}
}
public class Example17
{
public static void Main()
{
Dealer dealer = new Dealer();
ShowCards(dealer.Deal(20));
}
private static void ShowCards(Card[] cards)
{
foreach (var card in cards)
if (card != null)
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit);
}
}
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
open System
type Suit =
| Clubs
| Diamonds
| Hearts
| Spades
type Face =
| Ace | Two | Three
| Four | Five | Six
| Seven | Eight | Nine
| Ten | Jack | Queen | King
type Card = { Face: Face; Suit: Suit }
let suits = [ Clubs; Diamonds; Hearts; Spades ]
let faces = [ Ace; Two; Three; Four; Five; Six; Seven; Eight; Nine; Ten; Jack; Queen; King ]
type Dealer() =
let rnd = Random()
let mutable pos = 0
// Parallel array for sorting cards.
let order = Array.init (suits.Length * faces.Length) (fun _ -> rnd.NextDouble() )
// A deck of cards, without Jokers.
let deck = [|
for s in suits do
for f in faces do
{ Face = f; Suit = s } |]
// Shuffle the deck.
do Array.Sort(order, deck)
// Deal a number of cards from the deck, return None if failed
member _.Deal(numberToDeal) : Card [] option =
if numberToDeal = 0 || pos = deck.Length then
printfn "There are no cards left in the deck"
None
else
let cards = deck.[pos .. numberToDeal + pos - 1]
if numberToDeal > deck.Length - pos then
printfn "Can only deal the %i cards remaining on the deck." (deck.Length - pos)
pos <- min (pos + numberToDeal) deck.Length
Some cards
let showCards cards =
for card in cards do
printfn $"{card.Face} of {card.Suit}"
let dealer = Dealer()
dealer.Deal 20
|> Option.iter showCards
// The example displays output like the following:
// Six of Diamonds
// King of Clubs
// Eight of Clubs
// Seven of Clubs
// Queen of Clubs
// King of Hearts
// Three of Spades
// Ace of Clubs
// Four of Hearts
// Three of Diamonds
// Nine of Diamonds
// Two of Hearts
// Ace of Hearts
// Three of Hearts
// Four of Spades
// Eight of Hearts
// Queen of Diamonds
// Two of Clubs
// Four of Diamonds
// Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
Public Suit As Suit
Public FaceValue As FaceValue
Public Overrides Function ToString() As String
Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
End Function
End Class
Public Enum Suit As Integer
Hearts = 0
Diamonds = 1
Spades = 2
Clubs = 3
End Enum
Public Enum FaceValue As Integer
Ace = 1
Two = 2
Three = 3
Four = 4
Five = 5
Six = 6
Seven = 7
Eight = 8
Nine = 9
Ten = 10
Jack = 11
Queen = 12
King = 13
End Enum
Public Class Dealer
Dim rnd As Random
' A deck of cards, without Jokers.
Dim deck(51) As Card
' Parallel array for sorting cards.
Dim order(51) As Double
' A pointer to the next card to deal.
Dim ptr As Integer = 0
' A flag to indicate the deck is used.
Dim mustReshuffle As Boolean
Public Sub New()
rnd = New Random()
' Initialize the deck.
Dim deckCtr As Integer = 0
For Each Suit In [Enum].GetValues(GetType(Suit))
For Each faceValue In [Enum].GetValues(GetType(FaceValue))
Dim card As New Card()
card.Suit = CType(Suit, Suit)
card.FaceValue = CType(faceValue, FaceValue)
deck(deckCtr) = card
deckCtr += 1
Next
Next
For ctr As Integer = 0 To order.Length - 1
order(ctr) = rnd.NextDouble()
Next
Array.Sort(order, deck)
End Sub
Public Function Deal(numberToDeal As Integer) As Card()
If mustReshuffle Then
Console.WriteLine("There are no cards left in the deck")
Return Nothing
End If
Dim cardsDealt(numberToDeal - 1) As Card
For ctr As Integer = 0 To numberToDeal - 1
cardsDealt(ctr) = deck(ptr)
ptr += 1
If ptr = deck.Length Then
mustReshuffle = True
End If
If mustReshuffle And ctr < numberToDeal - 1
Console.WriteLine("Can only deal the {0} cards remaining on the deck.",
ctr + 1)
Return cardsDealt
End If
Next
Return cardsDealt
End Function
End Class
Public Module Example
Public Sub Main()
Dim dealer As New Dealer()
ShowCards(dealer.Deal(20))
End Sub
Private Sub ShowCards(cards() As Card)
For Each card In cards
If card IsNot Nothing Then _
Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
Next
End Sub
End Module
' The example displays output like the following:
' Six of Diamonds
' King of Clubs
' Eight of Clubs
' Seven of Clubs
' Queen of Clubs
' King of Hearts
' Three of Spades
' Ace of Clubs
' Four of Hearts
' Three of Diamonds
' Nine of Diamonds
' Two of Hearts
' Ace of Hearts
' Three of Hearts
' Four of Spades
' Eight of Hearts
' Queen of Diamonds
' Two of Clubs
' Four of Diamonds
' Jack of Hearts