Condividi tramite


TransformExtensionsCatalog.CopyColumns Metodo

Definizione

Creare un ColumnCopyingEstimatoroggetto , che copia i dati dalla colonna specificata in in inputColumnName una nuova colonna: outputColumnName.

public static Microsoft.ML.Transforms.ColumnCopyingEstimator CopyColumns (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName);
static member CopyColumns : Microsoft.ML.TransformsCatalog * string * string -> Microsoft.ML.Transforms.ColumnCopyingEstimator
<Extension()>
Public Function CopyColumns (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String) As ColumnCopyingEstimator

Parametri

catalog
TransformsCatalog

Catalogo della trasformazione.

outputColumnName
String

Nome della colonna risultante dalla trasformazione di inputColumnName. Il tipo di dati di questa colonna sarà uguale a quello della colonna di input.

inputColumnName
String

Nome della colonna da cui copiare i dati. Questo strumento di stima opera su qualsiasi tipo di dati.

Restituisce

Esempio

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class CopyColumns
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create a small dataset as an IEnumerable.
            var samples = new List<InputData>()
            {
                new InputData(){ ImageId = 1, Features = new [] { 1.0f, 1.0f,
                    1.0f } },

                new InputData(){ ImageId = 2, Features = new [] { 2.0f, 2.0f,
                    2.0f } },

                new InputData(){ ImageId = 3, Features = new [] { 3.0f, 3.0f,
                    3.0f } },

                new InputData(){ ImageId = 4, Features = new [] { 4.0f, 4.0f,
                    4.0f } },

                new InputData(){ ImageId = 5, Features = new [] { 5.0f, 5.0f,
                    5.0f } },

                new InputData(){ ImageId = 6, Features = new [] { 6.0f, 6.0f,
                    6.0f } },
            };

            // Convert training data to IDataView.
            var dataview = mlContext.Data.LoadFromEnumerable(samples);

            // CopyColumns is commonly used to rename columns.
            // For example, if you want to train towards ImageId, and your trainer
            // expects a "Label" column, you can use CopyColumns to rename ImageId
            // to Label. Technically, the ImageId column still exists, but it won't
            // be materialized unless you actually need it somewhere (e.g. if you
            // were to save the transformed data without explicitly dropping the
            // column). This is a general property of IDataView's lazy evaluation.
            var pipeline = mlContext.Transforms.CopyColumns("Label", "ImageId");

            // Now we can transform the data and look at the output to confirm the
            // behavior of CopyColumns. Don't forget that this operation doesn't
            // actually evaluate data until we read the data below.
            var transformedData = pipeline.Fit(dataview).Transform(dataview);

            // We can extract the newly created column as an IEnumerable of
            // SampleInfertDataTransformed, the class we define below.
            var rowEnumerable = mlContext.Data.CreateEnumerable<TransformedData>(
                transformedData, reuseRowObject: false);

            // And finally, we can write out the rows of the dataset, looking at the
            // columns of interest.
            Console.WriteLine($"Label and ImageId columns obtained " +
                $"post-transformation.");

            foreach (var row in rowEnumerable)
                Console.WriteLine($"Label: {row.Label} ImageId: {row.ImageId}");

            // Expected output:
            // ImageId and Label columns obtained post-transformation.
            //  Label: 1 ImageId: 1
            //  Label: 2 ImageId: 2
            //  Label: 3 ImageId: 3
            //  Label: 4 ImageId: 4
            //  Label: 5 ImageId: 5
            //  Label: 6 ImageId: 6
        }

        private class InputData
        {
            public int ImageId { get; set; }
            public float[] Features { get; set; }
        }

        private class TransformedData : InputData
        {
            public int Label { get; set; }
        }
    }
}

Si applica a