Condividi tramite


TextCatalog.TokenizeIntoWords Metodo

Definizione

Creare un WordTokenizingEstimatoroggetto , che tokenzza il testo di input usando separators come separatori.

public static Microsoft.ML.Transforms.Text.WordTokenizingEstimator TokenizeIntoWords (this Microsoft.ML.TransformsCatalog.TextTransforms catalog, string outputColumnName, string inputColumnName = default, char[] separators = default);
static member TokenizeIntoWords : Microsoft.ML.TransformsCatalog.TextTransforms * string * string * char[] -> Microsoft.ML.Transforms.Text.WordTokenizingEstimator
<Extension()>
Public Function TokenizeIntoWords (catalog As TransformsCatalog.TextTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional separators As Char() = Nothing) As WordTokenizingEstimator

Parametri

catalog
TransformsCatalog.TextTransforms

Catalogo della trasformazione correlata al testo.

outputColumnName
String

Nome della colonna risultante dalla trasformazione di inputColumnName. Questo tipo di dati della colonna sarà un vettore di dimensioni variabili di testo.

inputColumnName
String

Nome della colonna da trasformare. Se impostato su null, il valore dell'oggetto outputColumnName verrà usato come origine. Questo strumento di stima opera su scalari di testo e vettore di tipo di dati di testo.

separators
Char[]

I separatori da usare (usa il carattere di spazio per impostazione predefinita).

Restituisce

Esempio

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class TokenizeIntoWords
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Create an empty list as the dataset. The 'TokenizeIntoWords' does
            // not require training data as the estimator
            // ('WordTokenizingEstimator') created by 'TokenizeIntoWords' API is not
            // a trainable estimator. The empty list is only needed to pass input
            // schema to the pipeline.
            var emptySamples = new List<TextData>();

            // Convert sample list to an empty IDataView.
            var emptyDataView = mlContext.Data.LoadFromEnumerable(emptySamples);

            // A pipeline for converting text into vector of words.
            // The following call to 'TokenizeIntoWords' tokenizes text/string into
            // words using space as a separator. Space is also a default value for
            // the 'separators' argument if it is not specified.
            var textPipeline = mlContext.Transforms.Text.TokenizeIntoWords("Words",
                "Text", separators: new[] { ' ' });

            // Fit to data.
            var textTransformer = textPipeline.Fit(emptyDataView);

            // Create the prediction engine to get the word vector from the input
            // text /string.
            var predictionEngine = mlContext.Model.CreatePredictionEngine<TextData,
                TransformedTextData>(textTransformer);

            // Call the prediction API to convert the text into words.
            var data = new TextData()
            {
                Text = "ML.NET's TokenizeIntoWords API " +
                "splits text/string into words using the list of characters " +
                "provided as separators."
            };

            var prediction = predictionEngine.Predict(data);

            // Print the length of the word vector.
            Console.WriteLine($"Number of words: {prediction.Words.Length}");

            // Print the word vector.
            Console.WriteLine($"\nWords: {string.Join(",", prediction.Words)}");

            //  Expected output:
            //   Number of words: 15
            //   Words: ML.NET's,TokenizeIntoWords,API,splits,text/string,into,words,using,the,list,of,characters,provided,as,separators.
        }

        private class TextData
        {
            public string Text { get; set; }
        }

        private class TransformedTextData : TextData
        {
            public string[] Words { get; set; }
        }
    }
}

Si applica a