Condividi tramite


MklComponentsCatalog.VectorWhiten Metodo

Definizione

Accetta la colonna riempita con un vettore di variabili casuali con una matrice covarianza nota in un set di nuove variabili la cui covarianza è la matrice di identità, ovvero che non sono correlate e ognuna ha varianza 1.

public static Microsoft.ML.Transforms.VectorWhiteningEstimator VectorWhiten (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.WhiteningKind kind = Microsoft.ML.Transforms.WhiteningKind.ZeroPhaseComponentAnalysis, float epsilon = 1E-05, int maximumNumberOfRows = 100000, int rank = 0);
static member VectorWhiten : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.WhiteningKind * single * int * int -> Microsoft.ML.Transforms.VectorWhiteningEstimator
<Extension()>
Public Function VectorWhiten (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional kind As WhiteningKind = Microsoft.ML.Transforms.WhiteningKind.ZeroPhaseComponentAnalysis, Optional epsilon As Single = 1E-05, Optional maximumNumberOfRows As Integer = 100000, Optional rank As Integer = 0) As VectorWhiteningEstimator

Parametri

catalog
TransformsCatalog

Catalogo della trasformazione.

outputColumnName
String

Nome della colonna risultante dalla trasformazione di inputColumnName.

inputColumnName
String

Nome della colonna da trasformare. Se impostato su null, il valore dell'oggetto outputColumnName verrà usato come origine.

kind
WhiteningKind

Tipo di bianco (PCA/ZCA).

epsilon
Single

Costante di whitening, impedisce la divisione per zero.

maximumNumberOfRows
Int32

Numero massimo di righe usate per eseguire il training della trasformazione.

rank
Int32

In caso di whitening PCA, indica il numero di componenti da conservare.

Restituisce

Esempio

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public sealed class VectorWhiten
    {

        /// This example requires installation of additional nuget package 
        /// <a href="https://www.nuget.org/packages/Microsoft.ML.Mkl.Components/">Microsoft.ML.Mkl.Components</a>.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var data = GetVectorOfNumbersData();
            var trainData = ml.Data.LoadFromEnumerable(data);

            // Preview of the data.
            //
            // Features
            // 0   1   2   3   4   5   6   7   8   9
            // 1   2   3   4   5   6   7   8   9   0  
            // 2   3   4   5   6   7   8   9   0   1
            // 3   4   5   6   7   8   9   0   1   2
            // 4   5   6   7   8   9   0   1   2   3
            // 5   6   7   8   9   0   1   2   3   4
            // 6   7   8   9   0   1   2   3   4   5

            // A small printing utility.
            Action<string, IEnumerable<VBuffer<float>>> printHelper = (colName,
                column) =>
            {
                Console.WriteLine($"{colName} column obtained " +
                    $"post-transformation.");

                foreach (var row in column)
                    Console.WriteLine(string.Join(" ", row.DenseValues().Select(x =>
                        x.ToString("f3"))) + " ");
            };

            // A pipeline to project Features column into white noise vector.
            var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(
                SampleVectorOfNumbersData.Features), kind: Microsoft.ML.Transforms
                .WhiteningKind.ZeroPhaseComponentAnalysis);

            // The transformed (projected) data.
            var transformedData = whiteningPipeline.Fit(trainData).Transform(
                trainData);

            // Getting the data of the newly created column, so we can preview it.
            var whitening = transformedData.GetColumn<VBuffer<float>>(
                transformedData.Schema[nameof(SampleVectorOfNumbersData.Features)]);

            printHelper(nameof(SampleVectorOfNumbersData.Features), whitening);

            // Features column obtained post-transformation.
            //
            //-0.394 -0.318 -0.243 -0.168  0.209  0.358  0.433  0.589  0.873  2.047
            //-0.034  0.030  0.094  0.159  0.298  0.427  0.492  0.760  1.855 -1.197
            // 0.099  0.161  0.223  0.286  0.412  0.603  0.665  1.797 -1.265 -0.172
            // 0.211  0.277  0.344  0.410  0.606  1.267  1.333 -1.340 -0.205  0.065
            // 0.454  0.523  0.593  0.664  1.886 -0.757 -0.687 -0.022  0.176  0.310
            // 0.863  0.938  1.016  1.093 -1.326 -0.096 -0.019  0.189  0.330  0.483
        }

        private class SampleVectorOfNumbersData
        {
            [VectorType(10)]
            public float[] Features { get; set; }
        }

        /// <summary>
        /// Returns a few rows of the infertility dataset.
        /// </summary>
        private static IEnumerable<SampleVectorOfNumbersData>
            GetVectorOfNumbersData()
        {
            var data = new List<SampleVectorOfNumbersData>();
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 0,
                1, 2, 3, 4, 5, 6, 7, 8, 9 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 1,
                2, 3, 4, 5, 6, 7, 8, 9, 0 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 2, 3, 4, 5, 6, 7, 8, 9, 0, 1 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 5, 6, 7, 8, 9, 0, 1, 2, 3, 4 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 6, 7, 8, 9, 0, 1, 2, 3, 4, 5 }
            });
            return data;
        }
    }
}
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public sealed class VectorWhitenWithOptions
    {
        /// This example requires installation of additional nuget package
        /// <a href="https://www.nuget.org/packages/Microsoft.ML.Mkl.Components/">Microsoft.ML.Mkl.Components</a>.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var data = GetVectorOfNumbersData();
            var trainData = ml.Data.LoadFromEnumerable(data);

            // Preview of the data.
            //
            // Features
            // 0   1   2   3   4   5   6   7   8   9
            // 1   2   3   4   5   6   7   8   9   0  
            // 2   3   4   5   6   7   8   9   0   1
            // 3   4   5   6   7   8   9   0   1   2
            // 4   5   6   7   8   9   0   1   2   3
            // 5   6   7   8   9   0   1   2   3   4
            // 6   7   8   9   0   1   2   3   4   5

            // A small printing utility.
            Action<string, IEnumerable<VBuffer<float>>> printHelper = (colName,
                column) =>
            {
                Console.WriteLine($"{colName} column obtained" +
                    $"post-transformation.");

                foreach (var row in column)
                    Console.WriteLine(string.Join(" ", row.DenseValues().Select(x =>
                        x.ToString("f3"))) + " ");
            };


            // A pipeline to project Features column into white noise vector.
            var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(
                SampleVectorOfNumbersData.Features), kind: Microsoft.ML.Transforms
                .WhiteningKind.PrincipalComponentAnalysis, rank: 4);

            // The transformed (projected) data.
            var transformedData = whiteningPipeline.Fit(trainData).Transform(
                trainData);

            // Getting the data of the newly created column, so we can preview it.
            var whitening = transformedData.GetColumn<VBuffer<float>>(
                transformedData.Schema[nameof(SampleVectorOfNumbersData.Features)]);

            printHelper(nameof(SampleVectorOfNumbersData.Features), whitening);

            // Features column obtained post-transformation.
            // -0.979  0.867  1.449  1.236
            // -1.030  1.012  0.426 -0.902
            // -1.047  0.677 -0.946 -1.060
            // -1.029  0.019 -1.502  1.108
            // -0.972 -1.338 -0.028  0.614
            // -0.938 -1.405  0.752 -0.967
        }

        private class SampleVectorOfNumbersData
        {
            [VectorType(10)]
            public float[] Features { get; set; }
        }

        /// <summary>
        /// Returns a few rows of the infertility dataset.
        /// </summary>
        private static IEnumerable<SampleVectorOfNumbersData>
            GetVectorOfNumbersData()
        {
            var data = new List<SampleVectorOfNumbersData>();
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 0,
                1, 2, 3, 4, 5, 6, 7, 8, 9 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 1,
                2, 3, 4, 5, 6, 7, 8, 9, 0 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 2, 3, 4, 5, 6, 7, 8, 9, 0, 1 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 5, 6, 7, 8, 9, 0, 1, 2, 3, 4 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 6, 7, 8, 9, 0, 1, 2, 3, 4, 5 }
            });
            return data;
        }
    }
}

Si applica a