Eseguire query su SQL Server con Azure Databricks
Questo articolo illustra come connettere Azure Databricks a Microsoft SQL Server per leggere e scrivere dati.
Importante
Le configurazioni descritte in questo articolo sono sperimentali. Le caratteristiche sperimentali vengono fornite come sono e non sono supportate da Databricks tramite il supporto tecnico del cliente. Per ottenere il supporto completo della federazione delle query, è consigliabile usare invece Lakehouse Federation, che consente agli utenti di Azure Databricks di sfruttare la sintassi di Unity Catalog e gli strumenti di governance dei dati.
Configurare una connessione a SQL Server
In Databricks Runtime 11.3 LTS e versioni successive è possibile usare la sqlserver
parola chiave per usare il driver incluso per la connessione a SQL Server. Quando si usano i dataframe, usare la sintassi seguente:
Python
remote_table = (spark.read
.format("sqlserver")
.option("host", "hostName")
.option("port", "port") # optional, can use default port 1433 if omitted
.option("user", "username")
.option("password", "password")
.option("database", "databaseName")
.option("dbtable", "schemaName.tableName") # (if schemaName not provided, default to "dbo")
.load()
)
Scala
val remote_table = spark.read
.format("sqlserver")
.option("host", "hostName")
.option("port", "port") // optional, can use default port 1433 if omitted
.option("user", "username")
.option("password", "password")
.option("database", "databaseName")
.option("dbtable", "schemaName.tableName") // (if schemaName not provided, default to "dbo")
.load()
Quando si usa SQL, specificare sqlserver
nella clausola e passare le opzioni durante la USING
creazione di una tabella, come illustrato nell'esempio seguente:
DROP TABLE IF EXISTS sqlserver_table;
CREATE TABLE sqlserver_table
USING sqlserver
OPTIONS (
dbtable '<schema-name.table-name>',
host '<host-name>',
port '1433',
database '<database-name>',
user '<username>',
password '<password>'
);
Usare il driver JDBC legacy
In Databricks Runtime 10.4 LTS e versioni successive è necessario specificare il driver e le configurazioni usando le impostazioni JDBC. L'esempio seguente esegue una query su SQL Server usando il driver JDBC. Per altre informazioni sulla lettura, la scrittura, la configurazione del parallelismo e il pushdown delle query, vedere Eseguire query sui database con JDBC.
Python
driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
database_host = "<database-host-url>"
database_port = "1433" # update if you use a non-default port
database_name = "<database-name>"
table = "<table-name>"
user = "<username>"
password = "<password>"
url = f"jdbc:sqlserver://{database_host}:{database_port};database={database_name}"
remote_table = (spark.read
.format("jdbc")
.option("driver", driver)
.option("url", url)
.option("dbtable", table)
.option("user", user)
.option("password", password)
.load()
)
Scala
val driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
val database_host = "<database-host-url>"
val database_port = "1433" // update if you use a non-default port
val database_name = "<database-name>"
val table = "<table-name>"
val user = "<username>"
val password = "<password>"
val url = s"jdbc:sqlserver://{database_host}:{database_port};database={database_name}"
val remote_table = spark.read
.format("jdbc")
.option("driver", driver)
.option("url", url)
.option("dbtable", table)
.option("user", user)
.option("password", password)
.load()