Monitorare i costi dei processi e le prestazioni & con il sistema tables.
Questo articolo fornisce esempi di come usare il sistema tables per monitorare i costi e le prestazioni dei lavori nel tuo account.
Queste query calcolano solo i costi per i processi eseguiti nel calcolo dei processi e nel calcolo serverless. I processi eseguiti in SQL Warehouse e le risorse di calcolo per tutti gli scopi non vengono fatturati come processi e pertanto vengono esclusi dall'attribuzione dei costi.
Nota
Queste query non restituiscono record dalle aree di lavoro esterne all'area cloud dell'area di lavoro corrente. Per monitorare i costi dei processi dalle aree di lavoro esterne all'area corrente, eseguire queste query in un'area di lavoro distribuita in tale area.
Requisiti
- L'
system.lakeflow
schema deve essere attivato da un amministratore dell'account. Consulta per abilitare gli schemi di sistema table. - Per accedere a questi sistemi tables, gli utenti devono:
- Essere sia un amministratore del metastore che un amministratore dell'account oppure
- Disporre delle autorizzazioni
USE
eSELECT
per gli schemi di sistema. Vedere l'accesso al sistema Granttables.
Dashboard di monitoraggio dei compiti
Il seguente dashboard usa il sistema tables per fornirti un monitoraggio completo dei tuoi processi di Databricks e dello stato operativo. Include casi d'uso comuni, ad esempio il rilevamento delle prestazioni dei processi, il monitoraggio degli errori e l'utilizzo delle risorse.
Importare il dashboard
- Scaricare il file JSON del dashboard dal repository GitHub di Databricks.
- Importare il dashboard nell'area di lavoro. Per istruzioni sull'importazione dei dashboard, vedere Importare un file del dashboard.
Query di osservabilità dei costi
Le seguenti query del dashboard illustrano le funzionalità di monitoraggio dei costi delle attività.
Incarichi più costosi (ultimi 30 giorni)
Questa query identifica i processi con la spesa più elevata degli ultimi 30 giorni.
with list_cost_per_job as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
COUNT(DISTINCT t1.usage_metadata.job_run_id) as runs,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = "JOBS"
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name,
t1.job_id,
t1.workspace_id,
t1.runs,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Attività più costose (ultimi 30 giorni)
Questa query identifica l'esecuzione del processo con la spesa più elevata degli ultimi 30 giorni.
with list_cost_per_job_run as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
t1.usage_metadata.job_run_id as run_id,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = 'JOBS'
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t1.workspace_id,
t2.name,
t1.job_id,
t1.run_id,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job_run t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Analisi delle tendenze di spesa (7-14 giorni)
Questa query identifica quali lavori hanno registrato l'aumento più significativo nella spesa dei costi list nelle ultime 2 settimane.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.usage_metadata.job_id as job_id,
t1.identity_metadata.run_as as run_as,
t1.usage_quantity * list_prices.pricing.default AS list_cost
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices
ON
t1.cloud = list_prices.cloud AND
t1.sku_name = list_prices.sku_name AND
t1.usage_start_time >= list_prices.price_start_time AND
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is NULL)
WHERE
t1.billing_origin_product = 'JOBS' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 14 DAY
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name
,t1.workspace_id
,t1.job_id
,t1.sku_name
,t1.run_as
,Last7DaySpend
,Last14DaySpend
,last7DaySpend - last14DaySpend as Last7DayGrowth
,try_divide( (last7DaySpend - last14DaySpend) , last14DaySpend) * 100 AS Last7DayGrowthPct
FROM
(
SELECT
workspace_id,
job_id,
run_as,
sku_name,
SUM(list_cost) AS spend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -8) AND date_add(current_date(), -1) THEN list_cost ELSE 0 END) AS Last7DaySpend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -15) AND date_add(current_date(), -8) THEN list_cost ELSE 0 END) AS Last14DaySpend
FROM job_run_timeline_with_cost
GROUP BY ALL
) t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
ORDER BY
Last7DayGrowth DESC
LIMIT 100
Interrogazioni sulla salute operativa
Ecco alcuni dei modi in cui questo dashboard consente di tenere traccia delle prestazioni e dell'affidabilità dei processi.
Analisi dei processi falliti
Questa query restituisce informazioni sui processi con un numero elevato di esecuzioni di cui è stato eseguito il failover negli ultimi 30 giorni. È possibile visualizzare il numero di esecuzioni, il numero di errori, il rapporto di esito positivo e il costo delle esecuzioni non riuscite del processo.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.identity_metadata.run_as as run_as,
t2.job_id,
t2.run_id,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = 'JOBS' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_status_agg as (
SELECT
workspace_id,
job_id,
FIRST(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state IN ('ERROR', 'FAILED', 'TIMED_OUT')
GROUP BY ALL
),
terminal_statues as (
SELECT
workspace_id,
job_id,
CASE WHEN result_state IN ('ERROR', 'FAILED', 'TIMED_OUT') THEN 1 ELSE 0 END as is_failure,
period_end_time as last_seen_date
FROM system.lakeflow.job_run_timeline
WHERE
result_state IS NOT NULL AND
period_end_time >= CURRENT_DATE() - INTERVAL 30 DAYS
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
first(t2.name) as name,
t1.workspace_id,
t1.job_id,
COUNT(*) as runs,
t3.run_as,
SUM(is_failure) as failures,
(1 - COALESCE(try_divide(SUM(is_failure), COUNT(*)), 0)) * 100 as success_ratio,
first(t3.list_cost) as failure_list_cost,
MAX(t1.last_seen_date) as last_seen_date
FROM terminal_statues t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
LEFT JOIN cost_per_status_agg t3 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY failures DESC
Schemi di ripetizione dei tentativi
Questa query restituisce informazioni sui lavori che hanno avuto riparazioni ripetute negli ultimi 30 giorni, tra cui il numero di riparazioni, il costo degli interventi di riparazione e la durata complessiva degli interventi di riparazione.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t2.job_id,
t2.run_id,
t1.identity_metadata.run_as as run_as,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.billing_origin_product = 'JOBS' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_unsuccesful_status_agg as (
SELECT
workspace_id,
job_id,
run_id,
first(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state != "SUCCEEDED"
GROUP BY ALL
),
repaired_runs as (
SELECT
workspace_id, job_id, run_id, COUNT(*) as cnt
FROM system.lakeflow.job_run_timeline
WHERE result_state IS NOT NULL
GROUP BY ALL
HAVING cnt > 1
),
successful_repairs as (
SELECT t1.workspace_id, t1.job_id, t1.run_id, MAX(t1.period_end_time) as period_end_time
FROM system.lakeflow.job_run_timeline t1
JOIN repaired_runs t2
ON t1.workspace_id=t2.workspace_id AND t1.job_id=t2.job_id AND t1.run_id=t2.run_id
WHERE t1.result_state="SUCCEEDED"
GROUP BY ALL
),
combined_repairs as (
SELECT
t1.*,
t2.period_end_time,
t1.cnt as repairs
FROM repaired_runs t1
LEFT JOIN successful_repairs t2 USING (workspace_id, job_id, run_id)
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
last(t3.name) as name,
t1.workspace_id,
t1.job_id,
t1.run_id,
first(t4.run_as, TRUE) as run_as,
first(t1.repairs) - 1 as repairs,
first(t4.list_cost) as repair_list_cost,
CASE WHEN t1.period_end_time IS NOT NULL THEN CAST(t1.period_end_time - MIN(t2.period_end_time) as LONG) ELSE NULL END AS repair_time_seconds
FROM combined_repairs t1
JOIN system.lakeflow.job_run_timeline t2 USING (workspace_id, job_id, run_id)
LEFT JOIN most_recent_jobs t3 USING (workspace_id, job_id)
LEFT JOIN cost_per_unsuccesful_status_agg t4 USING (workspace_id, job_id, run_id)
WHERE
t2.result_state IS NOT NULL
GROUP BY t1.workspace_id, t1.job_id, t1.run_id, t1.period_end_time
ORDER BY repairs DESC