Condividi tramite


Eseguire query sui dati in Azure Cosmos DB for MongoDB usando JavaScript

SI APPLICA A: MongoDB

Usare query e pipeline di aggregazione per trovare e modificare documenti in una raccolta.

Nota

I frammenti di codice di esempio sono disponibili in GitHub come progetto JavaScript.

Documentazione di riferimento dell'API per MongoDB | Pacchetto MongoDB (npm)

Eseguire query per documenti

Per trovare documenti, usare una query per definire la modalità di individuazione dei documenti.

// assume doc exists

const product = {
    _id: ObjectId("62b1f43a9446918500c875c5"),
    category: "gear-surf-surfboards",
    name: "Yamba Surfboard 7",
    quantity: 12,
    sale: false
};


// For unsharded database: use id
const query1 = { _id: ObjectId(product._id) };
const foundById = await client.db("adventureworks").collection('products').findOne(query1);
console.log(`Read doc:\t\n${Object.keys(foundById).map(key => `\t${key}: ${foundById[key]}\n`)}`);

// For sharded database: point read doc from collection using the id and partitionKey
const query2 = { _id: ObjectId(product._id), category: product.category };
const foundByIdAndPartitionKey = await client.db("adventureworks").collection('products').findOne(query2);
console.log(`Read doc 2:\t\n${Object.keys(foundByIdAndPartitionKey).map(key => `\t${key}: ${foundByIdAndPartitionKey[key]}\n`)}`);


// Find one by unique doc property value
const query3 = { name: product.name};
const foundByUniqueValue = await client.db("adventureworks").collection('products').findOne(query3);
console.log(`Read doc 3:\t\n${Object.keys(foundByUniqueValue).map(key => `\t${key}: ${foundByUniqueValue[key]}\n`)}`);

// Find one (with many that match query) still returns one doc
const query4 = { category: product.category };
const foundByNonUniqueValue = await client.db("adventureworks").collection('products').findOne(query4);
console.log(`Read doc 4:\t\n${Object.keys(foundByNonUniqueValue).map(key => `\t${key}: ${foundByNonUniqueValue[key]}\n`)}`);

// Find all that match query
const query5 = { category: product.category };
const foundAll = await client.db("adventureworks").collection('products').find(query5).sort({_id: 1}).toArray();
console.log(`Matching all in product category:\n${foundAll.map(doc => `\t${doc._id}: ${doc.name}\n`)}`);

// Find all in collection with empty query {}
const foundAll2 = await client.db("adventureworks").collection('products').find({}).toArray();
console.log(`All docs:\n${foundAll2.map(doc => `\t${doc._id}: ${doc.name}\n`)}`);

// Pagination - next 5 docs
// sort by name require an index on name
const nextFiveDocs = await client.db("adventureworks").collection('products').find({}).sort({name: 1}).skip(5).limit(5).toArray();
console.log(`All docs:\n${foundAll2.map(doc => `\t${doc._id}: ${doc.name}\n`)}`);

Il frammento di codice precedente visualizza l'output della console di esempio seguente:

Read doc:
        _id: 62b1f43a9446918500c875c5
,       name: Yamba Surfboard-13
,       category: gear-surf-surfboards
,       quantity: 20
,       sale: false
,       discontinued: true

Read doc 2:
        _id: 62b1f43a9446918500c875c5
,       name: Yamba Surfboard-13
,       category: gear-surf-surfboards
,       quantity: 20
,       sale: false
,       discontinued: true

Read doc 3:
        _id: 62b23a371a09ed6441e5ee31
,       category: gear-surf-surfboards
,       name: Yamba Surfboard 7
,       quantity: 5
,       sale: true
,       discontinued: true

Read doc 4:
        _id: 62b1f43a9446918500c875c5
,       name: Yamba Surfboard-13
,       category: gear-surf-surfboards
,       quantity: 20
,       sale: false
,       discontinued: true

Matching all in product category:
        62b1f43a9446918500c875c5: Yamba Surfboard-13
,       62b1f4670c7af8c2942b7c10: Yamba Surfboard-3
,       62b1f46fa6546d2afb5715ac: Yamba Surfboard-90
,       62b1f474e4b43498c05d295b: Yamba Surfboard-9

All docs:
        62b1f43a9446918500c875c5: Yamba Surfboard-13
,       62b1f4670c7af8c2942b7c10: Yamba Surfboard-3
,       62b1f46fa6546d2afb5715ac: Yamba Surfboard-90
,       62b1f474e4b43498c05d295b: Yamba Surfboard-9
,       62b1f47896aa8cfa280edf2d: Yamba Surfboard-55
,       62b1f47dacbf04e86c8abf25: Yamba Surfboard-11
,       62b1f4804ee53f4c5c44778c: Yamba Surfboard-97
,       62b1f492ff69395b30a03169: Yamba Surfboard-93
,       62b23a371a09ed6441e5ee30: Yamba Surfboard 3
,       62b23a371a09ed6441e5ee31: Yamba Surfboard 7

All docs:
        62b1f43a9446918500c875c5: Yamba Surfboard-13
,       62b1f4670c7af8c2942b7c10: Yamba Surfboard-3
,       62b1f46fa6546d2afb5715ac: Yamba Surfboard-90
,       62b1f474e4b43498c05d295b: Yamba Surfboard-9
,       62b1f47896aa8cfa280edf2d: Yamba Surfboard-55
,       62b1f47dacbf04e86c8abf25: Yamba Surfboard-11
,       62b1f4804ee53f4c5c44778c: Yamba Surfboard-97
,       62b1f492ff69395b30a03169: Yamba Surfboard-93
,       62b23a371a09ed6441e5ee30: Yamba Surfboard 3
,       62b23a371a09ed6441e5ee31: Yamba Surfboard 7

done

Pipeline di aggregazione

Le pipeline di aggregazione sono utili per isolare costosi calcoli di query, trasformazioni e altre attività di elaborazione nel server Azure Cosmos DB, anziché eseguire queste operazioni nel client.

Per il supporto specifico delle pipeline di aggregazione, vedere quanto segue:

Sintassi delle pipeline di aggregazione

Una pipeline è una matrice con una serie di fasi come oggetti JSON.

const pipeline = [
    stage1,
    stage2
]

Sintassi delle fasi della pipeline

Una fase definisce l'operazione e i dati a cui viene applicata, ad esempio:

  • $match: trovare documenti
  • $addFields : aggiungere un campo al cursore, in genere dalla fase precedente
  • $limit: limitare il numero di risultati restituiti nel cursore
  • $project: passare campi nuovi o esistenti (possono essere campi calcolati)
  • $group: raggruppare i risultati in base a uno o più campi nella pipeline
  • $sort: ordinare i risultati
// reduce collection to relative documents
const matchStage = {
    '$match': {
        'categoryName': { $regex: 'Bikes' },
    }
}

// sort documents on field `name`
const sortStage = { 
    '$sort': { 
        "name": 1 
    } 
},

Aggregare la pipeline per ottenere un cursore iterabile

La pipeline viene aggregata per generare un cursore iterabile.

const db = 'adventureworks';
const collection = 'products';

const aggCursor = client.db(databaseName).collection(collectionName).aggregate(pipeline);

await aggCursor.forEach(product => {
    console.log(JSON.stringify(product));
});

Usare una pipeline di aggregazione in JavaScript

Usare una pipeline per mantenere l'elaborazione dati sul server prima di tornare al client.

Dati dei prodotti di esempio

Le aggregazioni seguenti usano la raccolta di prodotti di esempio con i dati sotto forma di:

[
    {
        "_id": "08225A9E-F2B3-4FA3-AB08-8C70ADD6C3C2",
        "categoryId": "75BF1ACB-168D-469C-9AA3-1FD26BB4EA4C",
        "categoryName": "Bikes, Touring Bikes",
        "sku": "BK-T79U-50",
        "name": "Touring-1000 Blue, 50",
        "description": "The product called \"Touring-1000 Blue, 50\"",
        "price": 2384.0700000000002,
        "tags": [
        ]
    },
    {
        "_id": "0F124781-C991-48A9-ACF2-249771D44029",
        "categoryId": "56400CF3-446D-4C3F-B9B2-68286DA3BB99",
        "categoryName": "Bikes, Mountain Bikes",
        "sku": "BK-M68B-42",
        "name": "Mountain-200 Black, 42",
        "description": "The product called \"Mountain-200 Black, 42\"",
        "price": 2294.9899999999998,
        "tags": [
        ]
    },
    {
        "_id": "3FE1A99E-DE14-4D11-B635-F5D39258A0B9",
        "categoryId": "26C74104-40BC-4541-8EF5-9892F7F03D72",
        "categoryName": "Components, Saddles",
        "sku": "SE-T924",
        "name": "HL Touring Seat/Saddle",
        "description": "The product called \"HL Touring Seat/Saddle\"",
        "price": 52.640000000000001,
        "tags": [
        ]
    },
]

Esempio 1: sottocategorie di prodotto, numero di prodotti e prezzo medio

Usare il codice di esempio seguente per segnalare il prezzo medio in ogni sottocategoria di prodotto.

// Goal: Find the average price of each product subcategory with 
// the number of products in that subcategory.
// Sort by average price descending.

// Read .env file and set environment variables
require('dotenv').config();

// Use official mongodb driver to connect to the server
const { MongoClient } = require('mongodb');

// New instance of MongoClient with connection string
// for Cosmos DB
const url = process.env.COSMOS_CONNECTION_STRING;
const client = new MongoClient(url);

async function main() {

  try {

    // Use connect method to connect to the server
    await client.connect();

    // Group all products by category
    // Find average price of each category
    // Count # of products in each category
    const groupByCategory = {
      '$group': {
        '_id': '$categoryName',
        'averagePrice': {
          '$avg': '$price'
        },
        'countOfProducts': {
          '$sum': 1
        }
      },
    };

    // Round price to 2 decimal places
    // Don't return _id
    // Rename category name help in `_id` to `categoryName`
    // Round prices to 2 decimal places
    // Rename property for countOfProducts to nProducts
    const additionalTransformations = {
      '$project': {
        '_id': 0,
        'category': '$_id',
        'nProducts':'$countOfProducts',
        'averagePrice': { '$round': ['$averagePrice', 2] }
      }
    };

    // Sort by average price descending
    const sort = { '$sort': { '$averagePrice': -1 } };

    // stages execute in order from top to bottom
    const pipeline = [
      groupByCategory,
      additionalTransformations,
      sort
    ];

    const db = 'adventureworks';
    const collection = 'products';

    // Get iterable cursor
    const aggCursor = client.db(db).collection(collection).aggregate(pipeline);

    // Display each item in cursor
    await aggCursor.forEach(product => {
      console.log(JSON.stringify(product));
    });

    return 'done';
  } catch (err) {
    console.log(JSON.stringify(err));
  }
}

main()
  .then(console.log)
  .catch(console.error)
  .finally(() => {
    // Close the db and its underlying connections
    client.close()
  });

// Results:
// {"averagePrice":51.99,"category":"Clothing, Jerseys","nProducts":8}
// {"averagePrice":1683.36,"category":"Bikes, Mountain Bikes","nProducts":32}
// {"averagePrice":1597.45,"category":"Bikes, Road Bikes","nProducts":43}
// {"averagePrice":20.24,"category":"Components, Chains","nProducts":1}
// {"averagePrice":25,"category":"Accessories, Locks","nProducts":1}
// {"averagePrice":631.42,"category":"Components, Touring Frames","nProducts":18}
// {"averagePrice":9.25,"category":"Clothing, Socks","nProducts":4}
// {"averagePrice":125,"category":"Accessories, Panniers","nProducts":1}
// ... remaining fields ...

Esempio 2: tipi di biciclette con fascia di prezzo

Usare il codice di esempio seguente per creare report in base alla sottocategoria Bikes.

// Goal: Find the price range for the different bike subcategories. 

// Read .env file and set environment variables
require('dotenv').config();

// Use official mongodb driver to connect to the server
const { MongoClient } = require('mongodb');

// New instance of MongoClient with connection string
// for Cosmos DB
const url = process.env.COSMOS_CONNECTION_STRING;
const client = new MongoClient(url);

async function main() {

  try {

    // Use connect method to connect to the server
    await client.connect();

    const categoryName = 'Bikes';

    const findAllBikes = {
      '$match': {
        'categoryName': { $regex:  categoryName},
      }
    };

    // Convert 'Bikes, Touring Bikes' to ['Bikes', 'Touring Bikes']
    const splitStringIntoCsvArray = {
      $addFields: {
        'categories': { '$split': ['$categoryName', ', '] }
      }
    };

    // Remove first element from array
    // Converts ['Bikes', 'Touring Bikes'] to ['Touring Bikes']
    const removeFirstElement = {
      $addFields: {
        'subcategory': { '$slice': ['$categories', 1, { $subtract: [{ $size: '$categories' }, 1] }] }
      }
    }

    // Group items by book subcategory, and find min, avg, and max price
    const groupBySubcategory = {
      '$group': {
        '_id': '$subcategory',
        'maxPrice': {
          '$max': '$price'
        },
        'averagePrice': {
          '$avg': '$price'
        },
        'minPrice': {
          '$min': '$price'
        },
        'countOfProducts': {
          '$sum': 1
        }
      },
    };

    // Miscellaneous transformations
    // Don't return _id
    // Convert subcategory from array of 1 item to string in `name`
    // Round prices to 2 decimal places
    // Rename property for countOfProducts to nProducts
    const additionalTransformations = {
      '$project': {
        '_id': 0,
        'name': { '$arrayElemAt': ['$_id', 0]},
        'nProducts': '$countOfProducts',
        'min': { '$round': ['$minPrice', 2] },
        'avg': { '$round': ['$averagePrice', 2] },
        'max': { '$round': ['$maxPrice', 2] }
      }
    };

    // Sort by subcategory
    const sortBySubcategory = { '$sort': 
        { 'name': 1 } 
    };

    // stages execute in order from top to bottom
    const pipeline = [
      findAllBikes,
      splitStringIntoCsvArray,
      removeFirstElement,
      groupBySubcategory,
      additionalTransformations,
      sortBySubcategory
    ];

    const db = 'adventureworks';
    const collection = 'products';

    // Get iterable cursor
    const aggCursor = client.db(db).collection(collection).aggregate(pipeline);

    // Display each item in cursor
    await aggCursor.forEach(product => {
      console.log(JSON.stringify(product));
    });

    return 'done';
  } catch (err) {
    console.log(JSON.stringify(err));
  }
}

main()
  .then(console.log)
  .catch(console.error)
  .finally(() => {
    // Close the db and its underlying connections
    client.close();
  });

// Results: 
// {'name':'Mountain Bikes','nProducts':32,'min':539.99,'avg':1683.37,'max':3399.99}
// {'name':'Road Bikes','nProducts':43,'min':539.99,'avg':1597.45,'max':3578.27}
// {'name':'Touring Bikes','nProducts':22,'min':742.35,'avg':1425.25,'max':2384.07}

Vedi anche