Distribuire ed eseguire stime con un modello ONNX e Machine Learning SQL
Importante
SQL Edge di Azure verrà ritirato il 30 settembre 2025. Per altre informazioni e per le opzioni di migrazione, vedere l'avviso di ritiro.
Nota
SQL Edge di Azure non supporta più la piattaforma ARM64.
In questo avvio rapido si apprenderà come eseguire il training di un modello, convertirlo in ONNX, distribuirlo in SQL Edge di Azure e quindi eseguire l'istruzione PREDICT nativa sui dati usando il modello ONNX caricato.
Questo avvio rapido si basa su scikit-learn e usa il set di dati Boston Housing.
Operazioni preliminari
Se si usa SQL Edge di Azure e non è stato distribuito un modulo SQL Edge di Azure, seguire i passaggi di distribuire SQL Edge usando il portale di Azure.
Installare Azure Data Studio.
Installare i pacchetti Python necessari per questa guida introduttiva:
- Aprire il nuovo notebook connesso al kernel Python 3.
- Selezionare Gestisci pacchetti
- Nella scheda Installati, cercare i pacchetti Python seguenti nell'elenco dei pacchetti installati. Se uno di questi pacchetti non è installato, selezionare la scheda Aggiungi nuovo, cercare il pacchetto e selezionare Installa.
- scikit-learn
- numpy
- onnxmltools
- onnxruntime
- pyodbc
- setuptools
- skl2onnx
- sqlalchemy
Per ogni parte dello script nelle sezioni seguenti, immetterla in una cella nel notebook di Azure Data Studio ed eseguire la cella.
Eseguire il training di una pipeline
Suddividere il set di dati per usare le funzionalità per la stima del valore mediano di una casa.
import numpy as np
import onnxmltools
import onnxruntime as rt
import pandas as pd
import skl2onnx
import sklearn
import sklearn.datasets
from sklearn.datasets import load_boston
boston = load_boston()
boston
df = pd.DataFrame(data=np.c_[boston['data'], boston['target']], columns=boston['feature_names'].tolist() + ['MEDV'])
target_column = 'MEDV'
# Split the data frame into features and target
x_train = pd.DataFrame(df.drop([target_column], axis = 1))
y_train = pd.DataFrame(df.iloc[:,df.columns.tolist().index(target_column)])
print("\n*** Training dataset x\n")
print(x_train.head())
print("\n*** Training dataset y\n")
print(y_train.head())
Output:
*** Training dataset x
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0
PTRATIO B LSTAT
0 15.3 396.90 4.98
1 17.8 396.90 9.14
2 17.8 392.83 4.03
3 18.7 394.63 2.94
4 18.7 396.90 5.33
*** Training dataset y
0 24.0
1 21.6
2 34.7
3 33.4
4 36.2
Name: MEDV, dtype: float64
Creare una pipeline per eseguire il training del modello LinearRegression. È possibile usare anche altri modelli di regressione.
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
continuous_transformer = Pipeline(steps=[('scaler', RobustScaler())])
# All columns are numeric - normalize them
preprocessor = ColumnTransformer(
transformers=[
('continuous', continuous_transformer, [i for i in range(len(x_train.columns))])])
model = Pipeline(
steps=[
('preprocessor', preprocessor),
('regressor', LinearRegression())])
# Train the model
model.fit(x_train, y_train)
Controllare l'accuratezza del modello e quindi calcolare il punteggio R2 e l'errore quadratico medio.
# Score the model
from sklearn.metrics import r2_score, mean_squared_error
y_pred = model.predict(x_train)
sklearn_r2_score = r2_score(y_train, y_pred)
sklearn_mse = mean_squared_error(y_train, y_pred)
print('*** Scikit-learn r2 score: {}'.format(sklearn_r2_score))
print('*** Scikit-learn MSE: {}'.format(sklearn_mse))
Output:
*** Scikit-learn r2 score: 0.7406426641094094
*** Scikit-learn MSE: 21.894831181729206
Convertire il modello in ONNX
Convertire i tipi di dati nei tipi di dati SQL supportati. Questa conversione è necessaria anche per altri dataframe.
from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, DoubleTensorType
def convert_dataframe_schema(df, drop=None, batch_axis=False):
inputs = []
nrows = None if batch_axis else 1
for k, v in zip(df.columns, df.dtypes):
if drop is not None and k in drop:
continue
if v == 'int64':
t = Int64TensorType([nrows, 1])
elif v == 'float32':
t = FloatTensorType([nrows, 1])
elif v == 'float64':
t = DoubleTensorType([nrows, 1])
else:
raise Exception("Bad type")
inputs.append((k, t))
return inputs
Usando skl2onnx
, convertire il modello LinearRegression nel formato ONNX e salvarlo in locale.
# Convert the scikit model to onnx format
onnx_model = skl2onnx.convert_sklearn(model, 'Boston Data', convert_dataframe_schema(x_train), final_types=[('variable1',FloatTensorType([1,1]))])
# Save the onnx model locally
onnx_model_path = 'boston1.model.onnx'
onnxmltools.utils.save_model(onnx_model, onnx_model_path)
Nota
Potrebbe essere necessario impostare il parametro target_opset
per la funzione skl2onnx.convert_sklearn se esiste una mancata corrispondenza tra la versione del runtime ONNX in SQL Edge e skl2onnx packge. Per altre informazioni, vedere le note sulla versione di SQL Edge per ottenere la versione del runtime ONNX corrispondente per la versione e selezionare target_opset
per il runtime ONNX in base alla matrice di compatibilità con le versioni precedenti di ONNX.
Testare il modello ONNX
Dopo aver convertito il modello nel formato ONNX, assegnare un punteggio al modello per indicare la portata della riduzione delle prestazioni (scarsa o nessuna).
Nota
ONNX Runtime usa dati di tipo float anziché double. Sono quindi possibili piccole discrepanze.
import onnxruntime as rt
sess = rt.InferenceSession(onnx_model_path)
y_pred = np.full(shape=(len(x_train)), fill_value=np.nan)
for i in range(len(x_train)):
inputs = {}
for j in range(len(x_train.columns)):
inputs[x_train.columns[j]] = np.full(shape=(1,1), fill_value=x_train.iloc[i,j])
sess_pred = sess.run(None, inputs)
y_pred[i] = sess_pred[0][0][0]
onnx_r2_score = r2_score(y_train, y_pred)
onnx_mse = mean_squared_error(y_train, y_pred)
print()
print('*** Onnx r2 score: {}'.format(onnx_r2_score))
print('*** Onnx MSE: {}\n'.format(onnx_mse))
print('R2 Scores are equal' if sklearn_r2_score == onnx_r2_score else 'Difference in R2 scores: {}'.format(abs(sklearn_r2_score - onnx_r2_score)))
print('MSE are equal' if sklearn_mse == onnx_mse else 'Difference in MSE scores: {}'.format(abs(sklearn_mse - onnx_mse)))
print()
Output:
*** Onnx r2 score: 0.7406426691136831
*** Onnx MSE: 21.894830759270633
R2 Scores are equal
MSE are equal
Inserire il modello ONNX
Archiviare il modello in SQL Edge di Azure all'interno di una tabella models
in un database onnx
. Nella stringa di connessione specificare l'indirizzo del server, il nome utente e la password.
import pyodbc
server = '' # SQL Server IP address
username = '' # SQL Server username
password = '' # SQL Server password
# Connect to the master DB to create the new onnx database
connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=master;UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(connection_string, autocommit=True)
cursor = conn.cursor()
database = 'onnx'
query = 'DROP DATABASE IF EXISTS ' + database
cursor.execute(query)
conn.commit()
# Create onnx database
query = 'CREATE DATABASE ' + database
cursor.execute(query)
conn.commit()
# Connect to onnx database
db_connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=" + database + ";UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(db_connection_string, autocommit=True)
cursor = conn.cursor()
table_name = 'models'
# Drop the table if it exists
query = f'drop table if exists {table_name}'
cursor.execute(query)
conn.commit()
# Create the model table
query = f'create table {table_name} ( ' \
f'[id] [int] IDENTITY(1,1) NOT NULL, ' \
f'[data] [varbinary](max) NULL, ' \
f'[description] varchar(1000))'
cursor.execute(query)
conn.commit()
# Insert the ONNX model into the models table
query = f"insert into {table_name} ([description], [data]) values ('Onnx Model',?)"
model_bits = onnx_model.SerializeToString()
insert_params = (pyodbc.Binary(model_bits))
cursor.execute(query, insert_params)
conn.commit()
Caricare i dati
Caricare i dati in SQL.
Creare prima due tabelle, features e target, in cui archiviare i subset del set di dati di Boston Housing.
- Features contiene tutti i dati usati per la stima del valore mediano di destinazione.
- Target contiene il valore mediano per ogni record nel set di dati.
import sqlalchemy
from sqlalchemy import create_engine
import urllib
db_connection_string = "Driver={ODBC Driver 17 for SQL Server};Server=" + server + ";Database=" + database + ";UID=" + username + ";PWD=" + password + ";"
conn = pyodbc.connect(db_connection_string)
cursor = conn.cursor()
features_table_name = 'features'
# Drop the table if it exists
query = f'drop table if exists {features_table_name}'
cursor.execute(query)
conn.commit()
# Create the features table
query = \
f'create table {features_table_name} ( ' \
f' [CRIM] float, ' \
f' [ZN] float, ' \
f' [INDUS] float, ' \
f' [CHAS] float, ' \
f' [NOX] float, ' \
f' [RM] float, ' \
f' [AGE] float, ' \
f' [DIS] float, ' \
f' [RAD] float, ' \
f' [TAX] float, ' \
f' [PTRATIO] float, ' \
f' [B] float, ' \
f' [LSTAT] float, ' \
f' [id] int)'
cursor.execute(query)
conn.commit()
target_table_name = 'target'
# Create the target table
query = \
f'create table {target_table_name} ( ' \
f' [MEDV] float, ' \
f' [id] int)'
x_train['id'] = range(1, len(x_train)+1)
y_train['id'] = range(1, len(y_train)+1)
print(x_train.head())
print(y_train.head())
Usare infine sqlalchemy
per inserire i dataframe pandas x_train
e y_train
rispettivamente nelle tabelle features
e target
.
db_connection_string = 'mssql+pyodbc://' + username + ':' + password + '@' + server + '/' + database + '?driver=ODBC+Driver+17+for+SQL+Server'
sql_engine = sqlalchemy.create_engine(db_connection_string)
x_train.to_sql(features_table_name, sql_engine, if_exists='append', index=False)
y_train.to_sql(target_table_name, sql_engine, if_exists='append', index=False)
È ora possibile visualizzare i dati nel database.
Eseguire PREDICT usando il modello ONNX
Con il modello in SQL, eseguire l'istruzione PREDICT nativa sui dati usando il modello ONNX caricato.
Nota
Modificare il kernel del notebook in SQL per eseguire la cella rimanente.
USE onnx
DECLARE @model VARBINARY(max) = (
SELECT DATA
FROM dbo.models
WHERE id = 1
);
WITH predict_input
AS (
SELECT TOP (1000) [id],
CRIM,
ZN,
INDUS,
CHAS,
NOX,
RM,
AGE,
DIS,
RAD,
TAX,
PTRATIO,
B,
LSTAT
FROM [dbo].[features]
)
SELECT predict_input.id,
p.variable1 AS MEDV
FROM PREDICT(MODEL = @model, DATA = predict_input, RUNTIME = ONNX) WITH (variable1 FLOAT) AS p;