Condividi tramite


Usare Terraform per creare un hub di Azure AI Foundry

Questo articolo illustra come usare Terraform per creare un hub di Azure AI Foundry, un progetto e una connessione ai servizi di intelligenza artificiale. Un hub è una posizione centrale per i data scientist e gli sviluppatori che collaborano a progetti di Machine Learning. Offre uno spazio condiviso e collaborativo per creare, eseguire il training e distribuire modelli di Machine Learning. L'hub è integrato con Azure Machine Learning e altri servizi di Azure ed è quindi la soluzione completa per le attività di Machine Learning. L'hub consente anche di gestire e monitorare le distribuzioni di intelligenza artificiale, nonché di assicurarsi che funzionino come previsto.

Terraform consente di definire, visualizzare in anteprima e distribuire l'infrastruttura cloud. Con Terraform è possibile creare file di configurazione usando la sintassi HCL. La sintassi HCL consente di specificare il provider di servizi cloud, ad esempio Azure, e gli elementi che costituiscono l'infrastruttura cloud. Dopo aver creato i file di configurazione, è necessario creare un piano di esecuzione che consenta di visualizzare in anteprima le modifiche apportate all'infrastruttura prima che vengano distribuite. Dopo aver verificato le modifiche, è possibile applicare il piano di esecuzione per distribuire l'infrastruttura.

  • Creare un gruppo di risorse
  • Impostare un account di archiviazione
  • Definire un insieme di credenziali delle chiavi
  • Configurare i servizi di intelligenza artificiale
  • Creare un hub di Azure AI Foundry
  • Sviluppare un progetto Azure AI Foundry
  • Stabilire una connessione ai servizi di intelligenza artificiale

Prerequisiti

Implementare il codice Terraform

  1. Creare una directory in cui testare ed eseguire il codice Terraform di esempio e impostarla come directory corrente.

  2. Creare un file denominato providers.tf e inserire il codice seguente.

    terraform {
      required_version = ">= 1.0"
    
      required_providers { 
        azurerm = {
          source  = "hashicorp/azurerm"
          version = "~>3.0"
        }
        azapi = {
          source  = "azure/azapi"
        }
        random = {
          source  = "hashicorp/random"
          version = "~>3.0"
        }
      }
    }
    
    provider "azurerm" {
      features {
        key_vault {
          recover_soft_deleted_key_vaults    = false
          purge_soft_delete_on_destroy       = false
          purge_soft_deleted_keys_on_destroy = false
        }
        resource_group {
          prevent_deletion_if_contains_resources = false
        }
      }
    }
    
    provider "azapi" {
    }
    
  3. Creare un file denominato main.tf e inserire il codice seguente.

    resource "random_pet" "rg_name" { 
      prefix = var.resource_group_name_prefix
    }
    
    // RESOURCE GROUP
    resource "azurerm_resource_group" "rg" {
      location = var.resource_group_location
      name     = random_pet.rg_name.id
    }
    
    data "azurerm_client_config" "current" {
    }
    
    // STORAGE ACCOUNT
    resource "azurerm_storage_account" "default" {
      name                            = "${var.prefix}storage${random_string.suffix.result}"
      location                        = azurerm_resource_group.rg.location
      resource_group_name             = azurerm_resource_group.rg.name
      account_tier                    = "Standard"
      account_replication_type        = "GRS"
      allow_nested_items_to_be_public = false
    }
    
    // KEY VAULT
    resource "azurerm_key_vault" "default" {
      name                     = "${var.prefix}keyvault${random_string.suffix.result}"
      location                 = azurerm_resource_group.rg.location
      resource_group_name      = azurerm_resource_group.rg.name
      tenant_id                = data.azurerm_client_config.current.tenant_id
      sku_name                 = "standard"
      purge_protection_enabled = false
    }
    
    // AzAPI AIServices
    resource "azapi_resource" "AIServicesResource"{
      type = "Microsoft.CognitiveServices/accounts@2023-10-01-preview"
      name = "AIServicesResource${random_string.suffix.result}"
      location = azurerm_resource_group.rg.location
      parent_id = azurerm_resource_group.rg.id
    
      identity {
        type = "SystemAssigned"
      }
    
      body = jsonencode({
        name = "AIServicesResource${random_string.suffix.result}"
        properties = {
          //restore = true
          customSubDomainName = "${random_string.suffix.result}domain"
            apiProperties = {
                statisticsEnabled = false
            }
        }
        kind = "AIServices"
        sku = {
            name = var.sku
        }
        })
    
      response_export_values = ["*"]
    }
    
    // Azure AI Hub
    resource "azapi_resource" "hub" {
      type = "Microsoft.MachineLearningServices/workspaces@2024-04-01-preview"
      name = "${random_pet.rg_name.id}-aih"
      location = azurerm_resource_group.rg.location
      parent_id = azurerm_resource_group.rg.id
    
      identity {
        type = "SystemAssigned"
      }
    
      body = jsonencode({
        properties = {
          description = "This is my Azure AI hub"
          friendlyName = "My Hub"
          storageAccount = azurerm_storage_account.default.id
          keyVault = azurerm_key_vault.default.id
    
          /* Optional: To enable these field, the corresponding dependent resources need to be uncommented.
          applicationInsight = azurerm_application_insights.default.id
          containerRegistry = azurerm_container_registry.default.id
          */
    
          /*Optional: To enable Customer Managed Keys, the corresponding 
          encryption = {
            status = var.encryption_status
            keyVaultProperties = {
                keyVaultArmId = azurerm_key_vault.default.id
                keyIdentifier = var.cmk_keyvault_key_uri
            }
          }
          */
          
        }
        kind = "hub"
      })
    }
    
    // Azure AI Project
    resource "azapi_resource" "project" {
      type = "Microsoft.MachineLearningServices/workspaces@2024-04-01-preview"
      name = "my-ai-project${random_string.suffix.result}"
      location = azurerm_resource_group.rg.location
      parent_id = azurerm_resource_group.rg.id
    
      identity {
        type = "SystemAssigned"
      }
    
      body = jsonencode({
        properties = {
          description = "This is my Azure AI PROJECT"
          friendlyName = "My Project"
          hubResourceId = azapi_resource.hub.id
        }
        kind = "project"
      })
    }
    
    // AzAPI AI Services Connection
    resource "azapi_resource" "AIServicesConnection" {
      type = "Microsoft.MachineLearningServices/workspaces/connections@2024-04-01-preview"
      name = "Default_AIServices${random_string.suffix.result}"
      parent_id = azapi_resource.hub.id
    
      body = jsonencode({
          properties = {
            category = "AIServices",
            target = jsondecode(azapi_resource.AIServicesResource.output).properties.endpoint,
            authType = "AAD",
            isSharedToAll = true,
            metadata = {
              ApiType = "Azure",
              ResourceId = azapi_resource.AIServicesResource.id
            }
          }
        })
      response_export_values = ["*"]
    }
    
    /* The following resources are OPTIONAL.
    // APPLICATION INSIGHTS
    resource "azurerm_application_insights" "default" {
      name                = "${var.prefix}appinsights${random_string.suffix.result}"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
      application_type    = "web"
    }
    
    // CONTAINER REGISTRY
    resource "azurerm_container_registry" "default" {
      name                     = "${var.prefix}contreg${random_string.suffix.result}"
      resource_group_name      = azurerm_resource_group.rg.name
      location                 = azurerm_resource_group.rg.location
      sku                      = "premium"
      admin_enabled            = true
    }
    */
    
  4. Creare un file denominato variables.tf e inserire il codice seguente.

    variable "resource_group_location" {
      type        = string
      default     = "eastus"
      description = "Location of the resource group."
    }
    
    variable "resource_group_name_prefix" {
      type        = string
      default     = "rg"
      description = "Prefix of the resource group name that's combined with a random ID so name is unique in your Azure subscription."
    }
    
    variable "prefix" {
        type = string
        description="This variable is used to name the hub, project, and dependent resources."
        default = "ai"
    }
    
    variable "sku" {
        type        = string
        description = "The sku name of the Azure Analysis Services server to create. Choose from: B1, B2, D1, S0, S1, S2, S3, S4, S8, S9. Some skus are region specific. See https://docs.microsoft.com/en-us/azure/analysis-services/analysis-services-overview#availability-by-region"
        default     = "S0"
    }
    
    resource "random_string" "suffix" {  
      length           = 4  
      special          = false  
      upper            = false  
    } 
    
    /*Optional: For Customer Managed Keys, uncomment this part AND the corresponding section in main.tf
    variable "cmk_keyvault_key_uri" {
        description = "Key vault uri to access the encryption key."
    }
    
    variable "encryption_status" {
        description = "Indicates whether or not the encryption is enabled for the workspace."
        default = "Enabled"
    }
    */
    
  5. Creare un file denominato outputs.tf e inserire il codice seguente.

    output "resource_group_name" {
      value = azurerm_resource_group.rg.id
    }
    
    output "workspace_name" {
        value = azapi_resource.project.id
    }
    
    output "endpoint" {
      value = jsondecode(azapi_resource.AIServicesResource.output).properties.endpoint
    }
    

Inizializzare Terraform

Per inizializzare la distribuzione di Terraform, eseguire terraform init. Questo comando scarica il provider di Azure necessario per gestire le risorse di Azure.

terraform init -upgrade

Punti principali:

  • Il parametro -upgrade aggiorna i plug-in del provider necessari alla versione più recente conforme ai vincoli di versione della configurazione.

Creare un piano di esecuzione Terraform

Eseguire terraform plan per creare un piano di esecuzione.

terraform plan -out main.tfplan

Punti principali:

  • Il comando terraform plan consente di creare un piano di esecuzione, ma non di eseguirlo. Determina invece le azioni necessarie per creare la configurazione specificata nei file di configurazione. Questo modello consente di verificare se il piano di esecuzione corrisponde alle aspettative prima di apportare modifiche alle risorse effettive.
  • Il parametro -out facoltativo consente di specificare un file di output per il piano. L'uso del parametro -out garantisce che il piano esaminato sia esattamente quello che viene applicato.

Applicare un piano di esecuzione Terraform

Eseguire terraform apply per applicare il piano di esecuzione all'infrastruttura cloud.

terraform apply main.tfplan

Punti principali:

  • Il comando terraform apply di esempio presuppone che in precedenza sia stato eseguito terraform plan -out main.tfplan.
  • Se è stato specificato un nome file diverso per il parametro -out, usare lo stesso nome file nella chiamata a terraform apply.
  • Se non è stato usato il parametro -out, chiamare terraform apply senza parametri.

Verificare i risultati

  1. Ottenere il nome del gruppo di risorse di Azure.

    resource_group_name=$(terraform output -raw resource_group_name)
    
  2. Ottenere il nome dell'area di lavoro.

    workspace_name=$(terraform output -raw workspace_name)
    
  3. Eseguire az ml workspace show per visualizzare le informazioni sulla nuova area di lavoro.

    az ml workspace show --resource-group $resource_group_name \
                         --name $workspace_name
    

Pulire le risorse

Quando le risorse create tramite Terraform non sono più necessarie, eseguire i passaggi seguenti:

  1. Eseguire terraform plan e specificare il flag destroy.

    terraform plan -destroy -out main.destroy.tfplan
    

    Punti principali:

    • Il comando terraform plan consente di creare un piano di esecuzione, ma non di eseguirlo. Determina invece le azioni necessarie per creare la configurazione specificata nei file di configurazione. Questo modello consente di verificare se il piano di esecuzione corrisponde alle aspettative prima di apportare modifiche alle risorse effettive.
    • Il parametro -out facoltativo consente di specificare un file di output per il piano. L'uso del parametro -out garantisce che il piano esaminato sia esattamente quello che viene applicato.
  2. Eseguire terraform apply per applicare il piano di esecuzione.

    terraform apply main.destroy.tfplan
    

Risolvere i problemi di Terraform in Azure

Risolvere i problemi comuni relativi all'uso di Terraform in Azure.

Passaggi successivi