Avvio rapido: analisi delle immagini
Introduzione all'API REST di Analisi immagini 4.0 o all'SDK client per configurare un'applicazione di analisi delle immagini di base. Il servizio Analisi immagini offre algoritmi di intelligenza artificiale per l'elaborazione delle immagini e la restituzione di informazioni sulle relative funzionalità visive. Seguire questi passaggi per installare un pacchetto nell'applicazione e provare il codice di esempio.
Usare Image Analysis Client SDK per .NET per leggere testo in un'immagine e generare una didascalia per l'immagine. Questa guida introduttiva analizza un'immagine remota e stampa i risultati nella console.
Documentazione di riferimento | Pacchetto (NuGet) | Esempi
Suggerimento
L'API Analysis 4.0 può eseguire molte operazioni diverse. Per esempi che illustrano tutte le funzionalità disponibili, vedere la guida pratica Analizza immagine.
Prerequisiti
- Una sottoscrizione di Azure: creare un account gratuitamente
- IDE di Visual Studio con sviluppo desktop .NET del carico di lavoro abilitato. In alternativa, se non si prevede di usare IDE di Visual Studio, è necessario installare .NET SDK.
- Dopo aver effettuato la sottoscrizione di Azure, creare una risorsa Visione artificiale nel portale di Azure. Per usare la funzionalità di creazione di didascalie in questa guida introduttiva, è necessario creare la risorsa in una delle aree di Azure supportate (vedere Didascalie delle immagini). Al termine della distribuzione, fare clic su Vai alla risorsa.
- Saranno necessari la chiave e l'endpoint della risorsa creata per connettere l'applicazione al servizio Visione di Azure AI.
- È possibile usare il piano tariffario gratuito (
F0
) per provare il servizio ed eseguire in un secondo momento l'aggiornamento a un livello a pagamento per la produzione.
Configurare l'applicazione
Creare una nuova applicazione C#.
Aprire Visual Studio e in Introduzione selezionare Crea un nuovo progetto. Impostare i filtri del modello su C#/Tutte le piattaforme/Console. Selezionare App console (applicazione da riga di comando che è possibile eseguire in .NET in Windows, Linux e macOS), quindi selezionare Avanti. Aggiornare il nome del progetto in ImageAnalysisQuickstart e scegliere Avanti. Selezionare .NET 6.0 o versione successiva e scegliere Crea per creare il progetto.
Installare l'SDK client
Dopo aver creato un nuovo progetto, installare il SDK client facendo clic con il pulsante destro del mouse sulla soluzione del progetto in Esplora soluzioni e scegliendo Gestisci pacchetti NuGet. Nella finestra di dialogo Gestione pacchetti visualizzata selezionare Sfoglia, Includi versione preliminare e cercare Azure.AI.Vision.ImageAnalysis
. Selezionare Installa.
Creare variabili di ambiente
In questo esempio, vengono scritte le credenziali nelle variabili di ambiente del computer locale che esegue l'applicazione.
Vai al portale di Azure. Se la risorsa creata nella sezione Prerequisiti è stata distribuita correttamente, selezionare Vai alla risorsa in Passaggi successivi. La chiave e l'endpoint saranno disponibili nella pagina Chiavi ed endpoint in Gestione risorse. La chiave della risorsa non corrisponde all'ID sottoscrizione di Azure.
Per impostare la variabile di ambiente per la chiave e l'endpoint, aprire una finestra della console e seguire le istruzioni del sistema operativo e dell'ambiente di sviluppo.
- Per impostare la
VISION_KEY
variabile di ambiente, sostituire<your_key>
con una delle chiavi della risorsa. - Per impostare la
VISION_ENDPOINT
variabile di ambiente, sostituire<your_endpoint>
con l'endpoint della risorsa.
Importante
Se si usa una chiave API, archiviarla in modo sicuro in un'altra posizione, ad esempio in Azure Key Vault. Non includere la chiave API direttamente nel codice e non esporla mai pubblicamente.
Per altre informazioni sulla sicurezza dei servizi IA, vedere Autenticare richieste in Servizi di Azure AI.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Dopo aver aggiunto le variabili di ambiente, potrebbe essere necessario riavviare gli eventuali programmi in esecuzione che leggeranno le variabili di ambiente, inclusa la finestra della console.
Analyze Image (Analisi dell'immagine)
Dalla directory del progetto aprire il file Program.cs creato in precedenza con il nuovo progetto. Incollare il codice seguente:
Suggerimento
Il codice mostra l'analisi dell'URL di un'immagine. È anche possibile analizzare un file di immagine locale o un'immagine da un buffer di memoria. Per altre informazioni, vedere la guida pratica all'analisi delle immagini.
using Azure;
using Azure.AI.Vision.ImageAnalysis;
using System;
public class Program
{
static void AnalyzeImage()
{
string endpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT");
string key = Environment.GetEnvironmentVariable("VISION_KEY");
ImageAnalysisClient client = new ImageAnalysisClient(
new Uri(endpoint),
new AzureKeyCredential(key));
ImageAnalysisResult result = client.Analyze(
new Uri("https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png"),
VisualFeatures.Caption | VisualFeatures.Read,
new ImageAnalysisOptions { GenderNeutralCaption = true });
Console.WriteLine("Image analysis results:");
Console.WriteLine(" Caption:");
Console.WriteLine($" '{result.Caption.Text}', Confidence {result.Caption.Confidence:F4}");
Console.WriteLine(" Read:");
foreach (DetectedTextBlock block in result.Read.Blocks)
foreach (DetectedTextLine line in block.Lines)
{
Console.WriteLine($" Line: '{line.Text}', Bounding Polygon: [{string.Join(" ", line.BoundingPolygon)}]");
foreach (DetectedTextWord word in line.Words)
{
Console.WriteLine($" Word: '{word.Text}', Confidence {word.Confidence.ToString("#.####")}, Bounding Polygon: [{string.Join(" ", word.BoundingPolygon)}]");
}
}
}
static void Main()
{
try
{
AnalyzeImage();
}
catch (Exception e)
{
Console.WriteLine(e);
}
}
}
Compilare ed eseguire l'applicazione selezionando Avvia debug nel menu Debug nella parte superiore della finestra IDE (o premere F5).
Output
L'output della console dovrebbe essere simile al testo seguente:
Caption:
"a person pointing at a screen", Confidence 0.4892
Text:
Line: '9:35 AM', Bounding polygon {{X=130,Y=129},{X=215,Y=130},{X=215,Y=149},{X=130,Y=148}}
Word: '9:35', Bounding polygon {{X=131,Y=130},{X=171,Y=130},{X=171,Y=149},{X=130,Y=149}}, Confidence 0.9930
Word: 'AM', Bounding polygon {{X=179,Y=130},{X=204,Y=130},{X=203,Y=149},{X=178,Y=149}}, Confidence 0.9980
Line: 'E Conference room 154584354', Bounding polygon {{X=130,Y=153},{X=224,Y=154},{X=224,Y=161},{X=130,Y=161}}
Word: 'E', Bounding polygon {{X=131,Y=154},{X=135,Y=154},{X=135,Y=161},{X=131,Y=161}}, Confidence 0.1040
Word: 'Conference', Bounding polygon {{X=142,Y=154},{X=174,Y=154},{X=173,Y=161},{X=141,Y=161}}, Confidence 0.9020
Word: 'room', Bounding polygon {{X=175,Y=154},{X=189,Y=155},{X=188,Y=161},{X=175,Y=161}}, Confidence 0.7960
Word: '154584354', Bounding polygon {{X=192,Y=155},{X=224,Y=154},{X=223,Y=162},{X=191,Y=161}}, Confidence 0.8640
Line: '#: 555-173-4547', Bounding polygon {{X=130,Y=163},{X=182,Y=164},{X=181,Y=171},{X=130,Y=170}}
Word: '#:', Bounding polygon {{X=131,Y=163},{X=139,Y=164},{X=139,Y=171},{X=131,Y=171}}, Confidence 0.0360
Word: '555-173-4547', Bounding polygon {{X=142,Y=164},{X=182,Y=165},{X=181,Y=171},{X=142,Y=171}}, Confidence 0.5970
Line: 'Town Hall', Bounding polygon {{X=546,Y=180},{X=590,Y=180},{X=590,Y=190},{X=546,Y=190}}
Word: 'Town', Bounding polygon {{X=547,Y=181},{X=568,Y=181},{X=568,Y=190},{X=546,Y=191}}, Confidence 0.9810
Word: 'Hall', Bounding polygon {{X=570,Y=181},{X=590,Y=181},{X=590,Y=191},{X=570,Y=190}}, Confidence 0.9910
Line: '9:00 AM - 10:00 AM', Bounding polygon {{X=546,Y=191},{X=596,Y=192},{X=596,Y=200},{X=546,Y=199}}
Word: '9:00', Bounding polygon {{X=546,Y=192},{X=555,Y=192},{X=555,Y=200},{X=546,Y=200}}, Confidence 0.0900
Word: 'AM', Bounding polygon {{X=557,Y=192},{X=565,Y=192},{X=565,Y=200},{X=557,Y=200}}, Confidence 0.9910
Word: '-', Bounding polygon {{X=567,Y=192},{X=569,Y=192},{X=569,Y=200},{X=567,Y=200}}, Confidence 0.6910
Word: '10:00', Bounding polygon {{X=570,Y=192},{X=585,Y=193},{X=584,Y=200},{X=570,Y=200}}, Confidence 0.8850
Word: 'AM', Bounding polygon {{X=586,Y=193},{X=593,Y=194},{X=593,Y=200},{X=586,Y=200}}, Confidence 0.9910
Line: 'Aaron Buaion', Bounding polygon {{X=543,Y=201},{X=581,Y=201},{X=581,Y=208},{X=543,Y=208}}
Word: 'Aaron', Bounding polygon {{X=545,Y=202},{X=560,Y=202},{X=559,Y=208},{X=544,Y=208}}, Confidence 0.6020
Word: 'Buaion', Bounding polygon {{X=561,Y=202},{X=580,Y=202},{X=579,Y=208},{X=560,Y=208}}, Confidence 0.2910
Line: 'Daily SCRUM', Bounding polygon {{X=537,Y=259},{X=575,Y=260},{X=575,Y=266},{X=537,Y=265}}
Word: 'Daily', Bounding polygon {{X=538,Y=259},{X=551,Y=260},{X=550,Y=266},{X=538,Y=265}}, Confidence 0.1750
Word: 'SCRUM', Bounding polygon {{X=552,Y=260},{X=570,Y=260},{X=570,Y=266},{X=551,Y=266}}, Confidence 0.1140
Line: '10:00 AM 11:00 AM', Bounding polygon {{X=536,Y=266},{X=590,Y=266},{X=590,Y=272},{X=536,Y=272}}
Word: '10:00', Bounding polygon {{X=539,Y=267},{X=553,Y=267},{X=552,Y=273},{X=538,Y=272}}, Confidence 0.8570
Word: 'AM', Bounding polygon {{X=554,Y=267},{X=561,Y=267},{X=560,Y=273},{X=553,Y=273}}, Confidence 0.9980
Word: '11:00', Bounding polygon {{X=564,Y=267},{X=578,Y=267},{X=577,Y=273},{X=563,Y=273}}, Confidence 0.4790
Word: 'AM', Bounding polygon {{X=579,Y=267},{X=586,Y=267},{X=585,Y=273},{X=578,Y=273}}, Confidence 0.9940
Line: 'Churlette de Crum', Bounding polygon {{X=538,Y=273},{X=584,Y=273},{X=585,Y=279},{X=538,Y=279}}
Word: 'Churlette', Bounding polygon {{X=539,Y=274},{X=562,Y=274},{X=561,Y=279},{X=538,Y=279}}, Confidence 0.4640
Word: 'de', Bounding polygon {{X=563,Y=274},{X=569,Y=274},{X=568,Y=279},{X=562,Y=279}}, Confidence 0.8100
Word: 'Crum', Bounding polygon {{X=570,Y=274},{X=582,Y=273},{X=581,Y=279},{X=569,Y=279}}, Confidence 0.8850
Line: 'Quarterly NI Hands', Bounding polygon {{X=538,Y=295},{X=588,Y=295},{X=588,Y=301},{X=538,Y=302}}
Word: 'Quarterly', Bounding polygon {{X=540,Y=296},{X=562,Y=296},{X=562,Y=302},{X=539,Y=302}}, Confidence 0.5230
Word: 'NI', Bounding polygon {{X=563,Y=296},{X=570,Y=296},{X=570,Y=302},{X=563,Y=302}}, Confidence 0.3030
Word: 'Hands', Bounding polygon {{X=572,Y=296},{X=588,Y=296},{X=588,Y=302},{X=571,Y=302}}, Confidence 0.6130
Line: '11.00 AM-12:00 PM', Bounding polygon {{X=536,Y=304},{X=588,Y=303},{X=588,Y=309},{X=536,Y=310}}
Word: '11.00', Bounding polygon {{X=538,Y=304},{X=552,Y=304},{X=552,Y=310},{X=538,Y=310}}, Confidence 0.6180
Word: 'AM-12:00', Bounding polygon {{X=554,Y=304},{X=578,Y=304},{X=577,Y=310},{X=553,Y=310}}, Confidence 0.2700
Word: 'PM', Bounding polygon {{X=579,Y=304},{X=586,Y=304},{X=586,Y=309},{X=578,Y=310}}, Confidence 0.6620
Line: 'Bebek Shaman', Bounding polygon {{X=538,Y=310},{X=577,Y=310},{X=577,Y=316},{X=538,Y=316}}
Word: 'Bebek', Bounding polygon {{X=539,Y=310},{X=554,Y=310},{X=554,Y=317},{X=539,Y=316}}, Confidence 0.6110
Word: 'Shaman', Bounding polygon {{X=555,Y=310},{X=576,Y=311},{X=576,Y=317},{X=555,Y=317}}, Confidence 0.6050
Line: 'Weekly stand up', Bounding polygon {{X=537,Y=332},{X=582,Y=333},{X=582,Y=339},{X=537,Y=338}}
Word: 'Weekly', Bounding polygon {{X=538,Y=332},{X=557,Y=333},{X=556,Y=339},{X=538,Y=338}}, Confidence 0.6060
Word: 'stand', Bounding polygon {{X=558,Y=333},{X=572,Y=334},{X=571,Y=340},{X=557,Y=339}}, Confidence 0.4890
Word: 'up', Bounding polygon {{X=574,Y=334},{X=580,Y=334},{X=580,Y=340},{X=573,Y=340}}, Confidence 0.8150
Line: '12:00 PM-1:00 PM', Bounding polygon {{X=537,Y=340},{X=583,Y=340},{X=583,Y=347},{X=536,Y=346}}
Word: '12:00', Bounding polygon {{X=539,Y=341},{X=553,Y=341},{X=552,Y=347},{X=538,Y=347}}, Confidence 0.8260
Word: 'PM-1:00', Bounding polygon {{X=554,Y=341},{X=575,Y=341},{X=574,Y=347},{X=553,Y=347}}, Confidence 0.2090
Word: 'PM', Bounding polygon {{X=576,Y=341},{X=583,Y=341},{X=582,Y=347},{X=575,Y=347}}, Confidence 0.0390
Line: 'Delle Marckre', Bounding polygon {{X=538,Y=347},{X=582,Y=347},{X=582,Y=352},{X=538,Y=353}}
Word: 'Delle', Bounding polygon {{X=540,Y=348},{X=559,Y=347},{X=558,Y=353},{X=539,Y=353}}, Confidence 0.5800
Word: 'Marckre', Bounding polygon {{X=560,Y=347},{X=582,Y=348},{X=582,Y=353},{X=559,Y=353}}, Confidence 0.2750
Line: 'Product review', Bounding polygon {{X=538,Y=370},{X=577,Y=370},{X=577,Y=376},{X=538,Y=375}}
Word: 'Product', Bounding polygon {{X=539,Y=370},{X=559,Y=371},{X=558,Y=376},{X=539,Y=376}}, Confidence 0.6150
Word: 'review', Bounding polygon {{X=560,Y=371},{X=576,Y=371},{X=575,Y=376},{X=559,Y=376}}, Confidence 0.0400
Pulire le risorse
Se si vuole pulire e rimuovere una sottoscrizione a Servizi di Azure AI, è possibile eliminare la risorsa o il gruppo di risorse. L'eliminazione del gruppo di risorse comporta anche l'eliminazione di tutte le altre risorse associate.
Passaggi successivi
In questo argomento di avvio rapido si è appreso come installare l’SDK client di Analisi immagini e effettuare chiamate di analisi delle immagini di base. Altre informazioni sulle funzionalità dell'API Analizza 4.0.
- Panoramica dell'analisi delle immagini
- Il codice sorgente di esempio è disponibile in GitHub.
Usare Image Analysis Client SDK per Python per leggere testo in un'immagine e generare una didascalia per l'immagine. Questa guida introduttiva analizza un'immagine remota e stampa i risultati nella console.
Pacchetti della documentazione di riferimento | (PyPi) | Esempi
Suggerimento
L'API Analysis 4.0 può eseguire molte operazioni diverse. Per esempi che illustrano tutte le funzionalità disponibili, vedere la guida pratica Analizza immagine.
Prerequisiti
- Una sottoscrizione di Azure: creare un account gratuitamente
- Python 3.x. L'installazione di Python deve includere pip. È possibile verificare se pip è installato eseguendo
pip --version
nella riga di comando. Per ottenere pip, installare la versione più recente di Python. - Dopo aver effettuato la sottoscrizione di Azure, creare una risorsa Visione artificiale nel portale di Azure. Per usare la funzionalità di creazione di didascalie in questa guida introduttiva, è necessario creare la risorsa in una delle aree di Azure supportate (per l'elenco delle aree, vedere Didascalie delle immagini). Al termine della distribuzione, fare clic su Vai alla risorsa.
- Saranno necessari la chiave e l'endpoint della risorsa creata per connettere l'applicazione al servizio Visione di Azure AI.
- È possibile usare il piano tariffario gratuito (
F0
) per provare il servizio ed eseguire in un secondo momento l'aggiornamento a un livello a pagamento per la produzione.
Creare variabili di ambiente
In questo esempio, vengono scritte le credenziali nelle variabili di ambiente del computer locale che esegue l'applicazione.
Vai al portale di Azure. Se la risorsa creata nella sezione Prerequisiti è stata distribuita correttamente, selezionare Vai alla risorsa in Passaggi successivi. La chiave e l'endpoint saranno disponibili nella pagina Chiavi ed endpoint in Gestione risorse. La chiave della risorsa non corrisponde all'ID sottoscrizione di Azure.
Per impostare la variabile di ambiente per la chiave e l'endpoint, aprire una finestra della console e seguire le istruzioni del sistema operativo e dell'ambiente di sviluppo.
- Per impostare la
VISION_KEY
variabile di ambiente, sostituire<your_key>
con una delle chiavi della risorsa. - Per impostare la
VISION_ENDPOINT
variabile di ambiente, sostituire<your_endpoint>
con l'endpoint della risorsa.
Importante
Se si usa una chiave API, archiviarla in modo sicuro in un'altra posizione, ad esempio in Azure Key Vault. Non includere la chiave API direttamente nel codice e non esporla mai pubblicamente.
Per altre informazioni sulla sicurezza dei servizi IA, vedere Autenticare richieste in Servizi di Azure AI.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Dopo aver aggiunto le variabili di ambiente, potrebbe essere necessario riavviare gli eventuali programmi in esecuzione che leggeranno le variabili di ambiente, inclusa la finestra della console.
Analizza immagine
Aprire un prompt dei comandi nella posizione in cui si vuole il nuovo progetto e creare un nuovo file denominato quickstart.py.
Eseguire questo comando per installare l'SDK Analisi delle immagini:
pip install azure-ai-vision-imageanalysis
Copiare il codice seguente in quickstart.py:
Suggerimento
Il codice mostra l'analisi dell'URL di un'immagine. È anche possibile analizzare un'immagine dal buffer di memoria del programma. Per altre informazioni, vedere la guida pratica all'analisi delle immagini.
import os from azure.ai.vision.imageanalysis import ImageAnalysisClient from azure.ai.vision.imageanalysis.models import VisualFeatures from azure.core.credentials import AzureKeyCredential # Set the values of your computer vision endpoint and computer vision key # as environment variables: try: endpoint = os.environ["VISION_ENDPOINT"] key = os.environ["VISION_KEY"] except KeyError: print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'") print("Set them before running this sample.") exit() # Create an Image Analysis client client = ImageAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Get a caption for the image. This will be a synchronously (blocking) call. result = client.analyze_from_url( image_url="https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png", visual_features=[VisualFeatures.CAPTION, VisualFeatures.READ], gender_neutral_caption=True, # Optional (default is False) ) print("Image analysis results:") # Print caption results to the console print(" Caption:") if result.caption is not None: print(f" '{result.caption.text}', Confidence {result.caption.confidence:.4f}") # Print text (OCR) analysis results to the console print(" Read:") if result.read is not None: for line in result.read.blocks[0].lines: print(f" Line: '{line.text}', Bounding box {line.bounding_polygon}") for word in line.words: print(f" Word: '{word.text}', Bounding polygon {word.bounding_polygon}, Confidence {word.confidence:.4f}")
Successivamente, eseguire l'applicazione con il comando
python
nel file di avvio rapido.python quickstart.py
Output
L'output della console dovrebbe essere simile al testo seguente:
Caption:
'a person pointing at a screen', Confidence 0.4892
Text:
Line: '9:35 AM', Bounding polygon {130, 129, 215, 130, 215, 149, 130, 148}
Word: '9:35', Bounding polygon {131, 130, 171, 130, 171, 149, 130, 149}, Confidence 0.9930
Word: 'AM', Bounding polygon {179, 130, 204, 130, 203, 149, 178, 149}, Confidence 0.9980
Line: 'E Conference room 154584354', Bounding polygon {130, 153, 224, 154, 224, 161, 130, 161}
Word: 'E', Bounding polygon {131, 154, 135, 154, 135, 161, 131, 161}, Confidence 0.1040
Word: 'Conference', Bounding polygon {142, 154, 174, 154, 173, 161, 141, 161}, Confidence 0.9020
Word: 'room', Bounding polygon {175, 154, 189, 155, 188, 161, 175, 161}, Confidence 0.7960
Word: '154584354', Bounding polygon {192, 155, 224, 154, 223, 162, 191, 161}, Confidence 0.8640
Line: '#: 555-173-4547', Bounding polygon {130, 163, 182, 164, 181, 171, 130, 170}
Word: '#:', Bounding polygon {131, 163, 139, 164, 139, 171, 131, 171}, Confidence 0.0360
Word: '555-173-4547', Bounding polygon {142, 164, 182, 165, 181, 171, 142, 171}, Confidence 0.5970
Line: 'Town Hall', Bounding polygon {546, 180, 590, 180, 590, 190, 546, 190}
Word: 'Town', Bounding polygon {547, 181, 568, 181, 568, 190, 546, 191}, Confidence 0.9810
Word: 'Hall', Bounding polygon {570, 181, 590, 181, 590, 191, 570, 190}, Confidence 0.9910
Line: '9:00 AM - 10:00 AM', Bounding polygon {546, 191, 596, 192, 596, 200, 546, 199}
Word: '9:00', Bounding polygon {546, 192, 555, 192, 555, 200, 546, 200}, Confidence 0.0900
Word: 'AM', Bounding polygon {557, 192, 565, 192, 565, 200, 557, 200}, Confidence 0.9910
Word: '-', Bounding polygon {567, 192, 569, 192, 569, 200, 567, 200}, Confidence 0.6910
Word: '10:00', Bounding polygon {570, 192, 585, 193, 584, 200, 570, 200}, Confidence 0.8850
Word: 'AM', Bounding polygon {586, 193, 593, 194, 593, 200, 586, 200}, Confidence 0.9910
Line: 'Aaron Buaion', Bounding polygon {543, 201, 581, 201, 581, 208, 543, 208}
Word: 'Aaron', Bounding polygon {545, 202, 560, 202, 559, 208, 544, 208}, Confidence 0.6020
Word: 'Buaion', Bounding polygon {561, 202, 580, 202, 579, 208, 560, 208}, Confidence 0.2910
Line: 'Daily SCRUM', Bounding polygon {537, 259, 575, 260, 575, 266, 537, 265}
Word: 'Daily', Bounding polygon {538, 259, 551, 260, 550, 266, 538, 265}, Confidence 0.1750
Word: 'SCRUM', Bounding polygon {552, 260, 570, 260, 570, 266, 551, 266}, Confidence 0.1140
Line: '10:00 AM 11:00 AM', Bounding polygon {536, 266, 590, 266, 590, 272, 536, 272}
Word: '10:00', Bounding polygon {539, 267, 553, 267, 552, 273, 538, 272}, Confidence 0.8570
Word: 'AM', Bounding polygon {554, 267, 561, 267, 560, 273, 553, 273}, Confidence 0.9980
Word: '11:00', Bounding polygon {564, 267, 578, 267, 577, 273, 563, 273}, Confidence 0.4790
Word: 'AM', Bounding polygon {579, 267, 586, 267, 585, 273, 578, 273}, Confidence 0.9940
Line: 'Churlette de Crum', Bounding polygon {538, 273, 584, 273, 585, 279, 538, 279}
Word: 'Churlette', Bounding polygon {539, 274, 562, 274, 561, 279, 538, 279}, Confidence 0.4640
Word: 'de', Bounding polygon {563, 274, 569, 274, 568, 279, 562, 279}, Confidence 0.8100
Word: 'Crum', Bounding polygon {570, 274, 582, 273, 581, 279, 569, 279}, Confidence 0.8850
Line: 'Quarterly NI Hands', Bounding polygon {538, 295, 588, 295, 588, 301, 538, 302}
Word: 'Quarterly', Bounding polygon {540, 296, 562, 296, 562, 302, 539, 302}, Confidence 0.5230
Word: 'NI', Bounding polygon {563, 296, 570, 296, 570, 302, 563, 302}, Confidence 0.3030
Word: 'Hands', Bounding polygon {572, 296, 588, 296, 588, 302, 571, 302}, Confidence 0.6130
Line: '11.00 AM-12:00 PM', Bounding polygon {536, 304, 588, 303, 588, 309, 536, 310}
Word: '11.00', Bounding polygon {538, 304, 552, 304, 552, 310, 538, 310}, Confidence 0.6180
Word: 'AM-12:00', Bounding polygon {554, 304, 578, 304, 577, 310, 553, 310}, Confidence 0.2700
Word: 'PM', Bounding polygon {579, 304, 586, 304, 586, 309, 578, 310}, Confidence 0.6620
Line: 'Bebek Shaman', Bounding polygon {538, 310, 577, 310, 577, 316, 538, 316}
Word: 'Bebek', Bounding polygon {539, 310, 554, 310, 554, 317, 539, 316}, Confidence 0.6110
Word: 'Shaman', Bounding polygon {555, 310, 576, 311, 576, 317, 555, 317}, Confidence 0.6050
Line: 'Weekly stand up', Bounding polygon {537, 332, 582, 333, 582, 339, 537, 338}
Word: 'Weekly', Bounding polygon {538, 332, 557, 333, 556, 339, 538, 338}, Confidence 0.6060
Word: 'stand', Bounding polygon {558, 333, 572, 334, 571, 340, 557, 339}, Confidence 0.4890
Word: 'up', Bounding polygon {574, 334, 580, 334, 580, 340, 573, 340}, Confidence 0.8150
Line: '12:00 PM-1:00 PM', Bounding polygon {537, 340, 583, 340, 583, 347, 536, 346}
Word: '12:00', Bounding polygon {539, 341, 553, 341, 552, 347, 538, 347}, Confidence 0.8260
Word: 'PM-1:00', Bounding polygon {554, 341, 575, 341, 574, 347, 553, 347}, Confidence 0.2090
Word: 'PM', Bounding polygon {576, 341, 583, 341, 582, 347, 575, 347}, Confidence 0.0390
Line: 'Delle Marckre', Bounding polygon {538, 347, 582, 347, 582, 352, 538, 353}
Word: 'Delle', Bounding polygon {540, 348, 559, 347, 558, 353, 539, 353}, Confidence 0.5800
Word: 'Marckre', Bounding polygon {560, 347, 582, 348, 582, 353, 559, 353}, Confidence 0.2750
Line: 'Product review', Bounding polygon {538, 370, 577, 370, 577, 376, 538, 375}
Word: 'Product', Bounding polygon {539, 370, 559, 371, 558, 376, 539, 376}, Confidence 0.6150
Word: 'review', Bounding polygon {560, 371, 576, 371, 575, 376, 559, 376}, Confidence 0.0400
Pulire le risorse
Se si vuole pulire e rimuovere una sottoscrizione a Servizi di Azure AI, è possibile eliminare la risorsa o il gruppo di risorse. L'eliminazione del gruppo di risorse comporta anche l'eliminazione di tutte le altre risorse associate.
Passaggi successivi
In questo argomento di avvio rapido si è appreso come installare l’SDK client di Analisi immagini e effettuare chiamate di analisi delle immagini di base. Altre informazioni sulle funzionalità dell'API Analizza 4.0.
- Panoramica dell'analisi delle immagini
- Il codice sorgente di esempio è disponibile in GitHub.
Usare Image Analysis Client SDK per Java per leggere il testo in un'immagine e generare una didascalia per l'immagine. Questa guida introduttiva analizza un'immagine remota e stampa i risultati nella console.
Documentazione di riferimento | Pacchetto Maven | Esempi
Suggerimento
L'API Analysis 4.0 può eseguire molte operazioni diverse. Per esempi che illustrano tutte le funzionalità disponibili, vedere la guida pratica Analizza immagine.
Prerequisiti
- Un computer Windows 10 (o versione successiva) x64 o Linux x64.
- Java Development Kit (JDK) versione 8 o successiva installata, ad esempio Azul Zulu OpenJDK, Microsoft Build of OpenJDK, Oracle Java o il JDK preferito. Eseguire
java -version
da una riga di comando per visualizzare la versione e confermare un'installazione riuscita. Assicurarsi che l'installazione di Java sia nativa dell'architettura di sistema e che non sia in esecuzione tramite emulazione. - Apache Maven installato. In Linux, eseguire l'installazione dai repository di distribuzione, se disponibili. Eseguire
mvn -v
per confermare l'installazione riuscita. - Una sottoscrizione di Azure: creare un account gratuitamente
- Dopo aver effettuato la sottoscrizione di Azure, creare una risorsa Visione artificiale nel portale di Azure. Per usare la funzionalità di creazione di didascalie in questa guida introduttiva, è necessario creare la risorsa in una delle aree di Azure supportate (vedere Didascalie delle immagini). Al termine della distribuzione, fare clic su Vai alla risorsa.
- Saranno necessari la chiave e l'endpoint della risorsa creata per connettere l'applicazione al servizio Visione di Azure AI.
- È possibile usare il piano tariffario gratuito (
F0
) per provare il servizio ed eseguire in un secondo momento l'aggiornamento a un livello a pagamento per la produzione.
Configurare l'applicazione
Aprire una finestra della console e creare una nuova cartella per l'applicazione di avvio rapido.
Aprire un editor di testo e copiare il contenuto seguente in un nuovo file. Salvare il file come
pom.xml
nella directory del progetto<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>my-application-name</artifactId> <version>1.0.0</version> <dependencies> <!-- https://mvnrepository.com/artifact/com.azure/azure-ai-vision-imageanalysis --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-ai-vision-imageanalysis</artifactId> <version>1.0.0-beta.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-nop</artifactId> <version>1.7.36</version> </dependency> </dependencies> </project>
Aggiornare il valore della versione (
1.0.0-beta.2
) in base alla versione più recente disponibile del pacchetto azure-ai-vision-imageanalysis nel repository Maven.Installare l'SDK e le dipendenze eseguendo quanto segue nella directory del progetto:
mvn clean dependency:copy-dependencies
Al termine dell'operazione, verificare che le cartelle
target\dependency
siano state create e che contengano file.jar
.
Creare variabili di ambiente
In questo esempio, vengono scritte le credenziali nelle variabili di ambiente del computer locale che esegue l'applicazione.
Vai al portale di Azure. Se la risorsa creata nella sezione Prerequisiti è stata distribuita correttamente, selezionare Vai alla risorsa in Passaggi successivi. La chiave e l'endpoint saranno disponibili nella pagina Chiavi ed endpoint in Gestione risorse. La chiave della risorsa non corrisponde all'ID sottoscrizione di Azure.
Per impostare la variabile di ambiente per la chiave e l'endpoint, aprire una finestra della console e seguire le istruzioni del sistema operativo e dell'ambiente di sviluppo.
- Per impostare la
VISION_KEY
variabile di ambiente, sostituire<your_key>
con una delle chiavi della risorsa. - Per impostare la
VISION_ENDPOINT
variabile di ambiente, sostituire<your_endpoint>
con l'endpoint della risorsa.
Importante
Se si usa una chiave API, archiviarla in modo sicuro in un'altra posizione, ad esempio in Azure Key Vault. Non includere la chiave API direttamente nel codice e non esporla mai pubblicamente.
Per altre informazioni sulla sicurezza dei servizi IA, vedere Autenticare richieste in Servizi di Azure AI.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Dopo aver aggiunto le variabili di ambiente, potrebbe essere necessario riavviare gli eventuali programmi in esecuzione che leggeranno le variabili di ambiente, inclusa la finestra della console.
Analyze Image (Analisi dell'immagine)
Aprire un editor di testo e copiare il contenuto seguente in un nuovo file. Salvare il file come ImageAnalysis.java
import com.azure.ai.vision.imageanalysis.*;
import com.azure.ai.vision.imageanalysis.models.*;
import com.azure.core.credential.KeyCredential;
import java.util.Arrays;
public class ImageAnalysisQuickStart {
public static void main(String[] args) {
String endpoint = System.getenv("VISION_ENDPOINT");
String key = System.getenv("VISION_KEY");
if (endpoint == null || key == null) {
System.out.println("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'.");
System.out.println("Set them before running this sample.");
System.exit(1);
}
// Create a synchronous Image Analysis client.
ImageAnalysisClient client = new ImageAnalysisClientBuilder()
.endpoint(endpoint)
.credential(new KeyCredential(key))
.buildClient();
// This is a synchronous (blocking) call.
ImageAnalysisResult result = client.analyzeFromUrl(
"https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
Arrays.asList(VisualFeatures.CAPTION, VisualFeatures.READ),
new ImageAnalysisOptions().setGenderNeutralCaption(true));
// Print analysis results to the console
System.out.println("Image analysis results:");
System.out.println(" Caption:");
System.out.println(" \"" + result.getCaption().getText() + "\", Confidence "
+ String.format("%.4f", result.getCaption().getConfidence()));
System.out.println(" Read:");
for (DetectedTextLine line : result.getRead().getBlocks().get(0).getLines()) {
System.out.println(" Line: '" + line.getText()
+ "', Bounding polygon " + line.getBoundingPolygon());
for (DetectedTextWord word : line.getWords()) {
System.out.println(" Word: '" + word.getText()
+ "', Bounding polygon " + word.getBoundingPolygon()
+ ", Confidence " + String.format("%.4f", word.getConfidence()));
}
}
}
}
Suggerimento
Il codice analizza un'immagine da un URL. È anche possibile analizzare un'immagine dal buffer di memoria del programma. Per altre informazioni, vedere la guida pratica all'analisi delle immagini.
Per compilare il file Java, eseguire il comando seguente:
javac ImageAnalysis.java -cp ".;target/dependency/*"
Verrà visualizzato il file ImageAnalysis.class
creato nella cartella corrente.
Per eseguire l'applicazione, usare il comando seguente:
java -cp ".;target/dependency/*" ImageAnalysis
Output
L'output della console dovrebbe essere simile al testo seguente:
Image analysis results:
Caption:
"a person pointing at a screen", Confidence 0.7768
Read:
Line: '9:35 AM', Bounding polygon [(x=131, y=130), (x=214, y=130), (x=214, y=148), (x=131, y=148)]
Word: '9:35', Bounding polygon [(x=132, y=130), (x=172, y=131), (x=171, y=149), (x=131, y=148)], Confidence 0.9770
Word: 'AM', Bounding polygon [(x=180, y=131), (x=203, y=131), (x=202, y=149), (x=180, y=149)], Confidence 0.9980
Line: 'Conference room 154584354', Bounding polygon [(x=132, y=153), (x=224, y=153), (x=224, y=161), (x=132, y=160)]
Word: 'Conference', Bounding polygon [(x=143, y=153), (x=174, y=154), (x=174, y=161), (x=143, y=161)], Confidence 0.6930
Word: 'room', Bounding polygon [(x=176, y=154), (x=188, y=154), (x=188, y=161), (x=176, y=161)], Confidence 0.9590
Word: '154584354', Bounding polygon [(x=192, y=154), (x=224, y=154), (x=223, y=161), (x=192, y=161)], Confidence 0.7050
Line: ': 555-123-4567', Bounding polygon [(x=133, y=164), (x=183, y=164), (x=183, y=170), (x=133, y=170)]
Word: ':', Bounding polygon [(x=134, y=165), (x=137, y=165), (x=136, y=171), (x=133, y=171)], Confidence 0.1620
Word: '555-123-4567', Bounding polygon [(x=143, y=165), (x=182, y=165), (x=181, y=171), (x=143, y=171)], Confidence 0.6530
Line: 'Town Hall', Bounding polygon [(x=545, y=178), (x=588, y=179), (x=588, y=190), (x=545, y=190)]
Word: 'Town', Bounding polygon [(x=545, y=179), (x=569, y=180), (x=569, y=190), (x=545, y=190)], Confidence 0.9880
Word: 'Hall', Bounding polygon [(x=571, y=180), (x=589, y=180), (x=589, y=190), (x=571, y=190)], Confidence 0.9900
Line: '9:00 AM - 10:00 AM', Bounding polygon [(x=545, y=191), (x=596, y=191), (x=596, y=199), (x=545, y=198)]
Word: '9:00', Bounding polygon [(x=546, y=191), (x=556, y=192), (x=556, y=199), (x=546, y=199)], Confidence 0.7580
Word: 'AM', Bounding polygon [(x=558, y=192), (x=565, y=192), (x=564, y=199), (x=558, y=199)], Confidence 0.9890
Word: '-', Bounding polygon [(x=567, y=192), (x=570, y=192), (x=569, y=199), (x=567, y=199)], Confidence 0.8960
Word: '10:00', Bounding polygon [(x=571, y=192), (x=585, y=192), (x=585, y=199), (x=571, y=199)], Confidence 0.7970
Word: 'AM', Bounding polygon [(x=587, y=192), (x=594, y=193), (x=593, y=199), (x=586, y=199)], Confidence 0.9940
Line: 'Aaron Blaion', Bounding polygon [(x=542, y=201), (x=581, y=201), (x=581, y=207), (x=542, y=207)]
Word: 'Aaron', Bounding polygon [(x=545, y=201), (x=560, y=202), (x=560, y=208), (x=545, y=208)], Confidence 0.7180
Word: 'Blaion', Bounding polygon [(x=562, y=202), (x=579, y=202), (x=579, y=207), (x=562, y=207)], Confidence 0.2740
Line: 'Daily SCRUM', Bounding polygon [(x=537, y=258), (x=574, y=259), (x=574, y=266), (x=537, y=265)]
Word: 'Daily', Bounding polygon [(x=538, y=259), (x=551, y=259), (x=551, y=266), (x=538, y=265)], Confidence 0.4040
Word: 'SCRUM', Bounding polygon [(x=553, y=259), (x=570, y=260), (x=570, y=265), (x=553, y=266)], Confidence 0.6970
Line: '10:00 AM-11:00 AM', Bounding polygon [(x=535, y=266), (x=589, y=265), (x=589, y=272), (x=535, y=273)]
Word: '10:00', Bounding polygon [(x=539, y=267), (x=553, y=266), (x=552, y=273), (x=539, y=274)], Confidence 0.2190
Word: 'AM-11:00', Bounding polygon [(x=554, y=266), (x=578, y=266), (x=578, y=272), (x=554, y=273)], Confidence 0.1750
Word: 'AM', Bounding polygon [(x=580, y=266), (x=587, y=266), (x=586, y=272), (x=580, y=272)], Confidence 1.0000
Line: 'Charlene de Crum', Bounding polygon [(x=538, y=272), (x=588, y=273), (x=588, y=279), (x=538, y=279)]
Word: 'Charlene', Bounding polygon [(x=538, y=273), (x=562, y=273), (x=562, y=280), (x=538, y=280)], Confidence 0.3220
Word: 'de', Bounding polygon [(x=563, y=273), (x=569, y=273), (x=569, y=280), (x=563, y=280)], Confidence 0.9100
Word: 'Crum', Bounding polygon [(x=570, y=273), (x=582, y=273), (x=583, y=280), (x=571, y=280)], Confidence 0.8710
Line: 'Quarterly NI Handa', Bounding polygon [(x=537, y=295), (x=588, y=295), (x=588, y=302), (x=537, y=302)]
Word: 'Quarterly', Bounding polygon [(x=539, y=296), (x=563, y=296), (x=563, y=302), (x=538, y=302)], Confidence 0.6030
Word: 'NI', Bounding polygon [(x=564, y=296), (x=570, y=296), (x=571, y=302), (x=564, y=302)], Confidence 0.7300
Word: 'Handa', Bounding polygon [(x=572, y=296), (x=588, y=296), (x=588, y=302), (x=572, y=302)], Confidence 0.9050
Line: '11.00 AM-12:00 PM', Bounding polygon [(x=538, y=303), (x=587, y=303), (x=587, y=309), (x=538, y=309)]
Word: '11.00', Bounding polygon [(x=539, y=303), (x=552, y=303), (x=553, y=309), (x=539, y=310)], Confidence 0.6710
Word: 'AM-12:00', Bounding polygon [(x=554, y=303), (x=578, y=303), (x=578, y=309), (x=554, y=309)], Confidence 0.6560
Word: 'PM', Bounding polygon [(x=579, y=303), (x=586, y=303), (x=586, y=309), (x=580, y=309)], Confidence 0.4540
Line: 'Bobek Shemar', Bounding polygon [(x=538, y=310), (x=577, y=310), (x=577, y=316), (x=538, y=316)]
Word: 'Bobek', Bounding polygon [(x=539, y=310), (x=554, y=311), (x=554, y=317), (x=539, y=317)], Confidence 0.6320
Word: 'Shemar', Bounding polygon [(x=556, y=311), (x=576, y=311), (x=577, y=317), (x=556, y=317)], Confidence 0.2190
Line: 'Weekly aband up', Bounding polygon [(x=538, y=332), (x=583, y=333), (x=583, y=339), (x=538, y=338)]
Word: 'Weekly', Bounding polygon [(x=539, y=333), (x=557, y=333), (x=557, y=339), (x=539, y=339)], Confidence 0.5750
Word: 'aband', Bounding polygon [(x=558, y=334), (x=573, y=334), (x=573, y=339), (x=558, y=339)], Confidence 0.4750
Word: 'up', Bounding polygon [(x=574, y=334), (x=580, y=334), (x=580, y=339), (x=574, y=339)], Confidence 0.8650
Line: '12:00 PM-1:00 PM', Bounding polygon [(x=538, y=339), (x=585, y=339), (x=585, y=346), (x=538, y=346)]
Word: '12:00', Bounding polygon [(x=539, y=339), (x=553, y=340), (x=553, y=347), (x=539, y=346)], Confidence 0.7090
Word: 'PM-1:00', Bounding polygon [(x=554, y=340), (x=575, y=340), (x=575, y=346), (x=554, y=347)], Confidence 0.9080
Word: 'PM', Bounding polygon [(x=576, y=340), (x=583, y=340), (x=583, y=346), (x=576, y=346)], Confidence 0.9980
Line: 'Danielle MarchTe', Bounding polygon [(x=538, y=346), (x=583, y=346), (x=583, y=352), (x=538, y=352)]
Word: 'Danielle', Bounding polygon [(x=539, y=347), (x=559, y=347), (x=559, y=352), (x=539, y=353)], Confidence 0.1960
Word: 'MarchTe', Bounding polygon [(x=560, y=347), (x=582, y=347), (x=582, y=352), (x=560, y=352)], Confidence 0.5710
Line: 'Product reviret', Bounding polygon [(x=537, y=370), (x=578, y=370), (x=578, y=375), (x=537, y=375)]
Word: 'Product', Bounding polygon [(x=539, y=370), (x=559, y=370), (x=559, y=376), (x=539, y=375)], Confidence 0.7000
Word: 'reviret', Bounding polygon [(x=560, y=370), (x=578, y=371), (x=578, y=375), (x=560, y=376)], Confidence 0.2180
Pulire le risorse
Se si vuole pulire e rimuovere una sottoscrizione a Servizi di Azure AI, è possibile eliminare la risorsa o il gruppo di risorse. L'eliminazione del gruppo di risorse comporta anche l'eliminazione di tutte le altre risorse associate.
Passaggi successivi
In questo argomento di avvio rapido si è appreso come installare l’SDK client di Analisi immagini e effettuare chiamate di analisi delle immagini di base. Altre informazioni sulle funzionalità dell'API Analizza 4.0.
- Panoramica dell'analisi delle immagini
- Il codice sorgente di esempio è disponibile in GitHub.
Usare Image Analysis Client SDK per JavaScript per leggere il testo in un'immagine e generare una didascalia per l'immagine. Questa guida introduttiva analizza un'immagine remota e stampa i risultati nella console.
Documentazione di riferimento | Pacchetto (npm) | Esempi
Suggerimento
L'API Analysis 4.0 può eseguire molte operazioni diverse. Per esempi che illustrano tutte le funzionalità disponibili, vedere la guida pratica Analizza immagine.
Prerequisiti
- Una sottoscrizione di Azure: creare un account gratuitamente
- Versione corrente di Node.js
- Versione corrente del browser Internet Edge, Chrome, Firefox o Safari.
- Dopo aver creato la sottoscrizione di Azure, creare una risorsa di Visione artificiale nel portale di Azure per ottenere la chiave e l'endpoint. Per usare la funzionalità di creazione di didascalie in questa guida introduttiva, è necessario creare la risorsa in una delle aree di Azure supportate (per l'elenco delle aree, vedere Didascalie delle immagini). Al termine della distribuzione, fare clic su Vai alla risorsa.
- Saranno necessari la chiave e l'endpoint della risorsa creata per connettere l'applicazione al servizio Visione di Azure AI.
- È possibile usare il piano tariffario gratuito (
F0
) per provare il servizio ed eseguire in un secondo momento l'aggiornamento a un livello a pagamento per la produzione.
Creare variabili di ambiente
In questo esempio, vengono scritte le credenziali nelle variabili di ambiente del computer locale che esegue l'applicazione.
Vai al portale di Azure. Se la risorsa creata nella sezione Prerequisiti è stata distribuita correttamente, selezionare Vai alla risorsa in Passaggi successivi. La chiave e l'endpoint saranno disponibili nella pagina Chiavi ed endpoint in Gestione risorse. La chiave della risorsa non corrisponde all'ID sottoscrizione di Azure.
Per impostare la variabile di ambiente per la chiave e l'endpoint, aprire una finestra della console e seguire le istruzioni del sistema operativo e dell'ambiente di sviluppo.
- Per impostare la
VISION_KEY
variabile di ambiente, sostituire<your_key>
con una delle chiavi della risorsa. - Per impostare la
VISION_ENDPOINT
variabile di ambiente, sostituire<your_endpoint>
con l'endpoint della risorsa.
Importante
Se si usa una chiave API, archiviarla in modo sicuro in un'altra posizione, ad esempio in Azure Key Vault. Non includere la chiave API direttamente nel codice e non esporla mai pubblicamente.
Per altre informazioni sulla sicurezza dei servizi IA, vedere Autenticare richieste in Servizi di Azure AI.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Dopo aver aggiunto le variabili di ambiente, potrebbe essere necessario riavviare gli eventuali programmi in esecuzione che leggeranno le variabili di ambiente, inclusa la finestra della console.
Analizza immagine
Creare una nuova applicazione Node.js
In una finestra della console, ad esempio cmd, PowerShell o Bash, creare e passare a una nuova directory per l'app.
mkdir myapp && cd myapp
Eseguire il comando
npm init
per creare un'applicazione Node con un filepackage.json
.npm init
Installare la libreria client
Installare un pacchetto npm
@azure-rest/ai-vision-image-analysis
:npm install @azure-rest/ai-vision-image-analysis
Installare anche il pacchetto dotenv:
npm install dotenv
Il file
package.json
dell'app viene aggiornato con le dipendenze.Creare un nuovo file index.js. Aprirlo in un editor di testo e incollarlo nel codice seguente.
const { ImageAnalysisClient } = require('@azure-rest/ai-vision-image-analysis'); const createClient = require('@azure-rest/ai-vision-image-analysis').default; const { AzureKeyCredential } = require('@azure/core-auth'); // Load the .env file if it exists require("dotenv").config(); const endpoint = process.env['VISION_ENDPOINT']; const key = process.env['VISION_KEY']; const credential = new AzureKeyCredential(key); const client = createClient(endpoint, credential); const features = [ 'Caption', 'Read' ]; const imageUrl = 'https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png'; async function analyzeImageFromUrl() { const result = await client.path('/imageanalysis:analyze').post({ body: { url: imageUrl }, queryParameters: { features: features }, contentType: 'application/json' }); const iaResult = result.body; if (iaResult.captionResult) { console.log(`Caption: ${iaResult.captionResult.text} (confidence: ${iaResult.captionResult.confidence})`); } if (iaResult.readResult) { iaResult.readResult.blocks.forEach(block => console.log(`Text Block: ${JSON.stringify(block)}`)); } } analyzeImageFromUrl();
Eseguire l'applicazione con il comando
node
nel file quickstart.node index.js
Pulire le risorse
Se si vuole pulire e rimuovere una sottoscrizione a Servizi di Azure AI, è possibile eliminare la risorsa o il gruppo di risorse. L'eliminazione del gruppo di risorse comporta anche l'eliminazione di tutte le altre risorse associate.
Passaggi successivi
In questo argomento di avvio rapido si è appreso come installare la libreria client di Analisi immagini e effettuare chiamate di analisi delle immagini di base. Altre informazioni sulle funzionalità dell'API Analizza.
- Panoramica dell'analisi delle immagini
- Il codice sorgente per questo esempio è disponibile su GitHub.
Usare l'API REST Analisi immagini per leggere il testo e generare didascalie per l'immagine (solo versione 4.0).
Suggerimento
L'API Analysis 4.0 può eseguire molte operazioni diverse. Per esempi che illustrano tutte le funzionalità disponibili, vedere la guida pratica Analizza immagine.
Prerequisiti
- Una sottoscrizione di Azure: creare un account gratuitamente
- Dopo aver creato la sottoscrizione di Azure, creare una risorsa di Visione artificiale nel portale di Azure per ottenere la chiave e l'endpoint. Per usare la funzionalità di creazione di didascalie in questa guida introduttiva, è necessario creare la risorsa in determinate aree di Azure. Vedere Disponibilità a livello di area. Al termine della distribuzione, fare clic su Vai alla risorsa.
- Sarà necessaria la chiave e l’endpoint della risorsa creata per connettere l’applicazione al servizio Visione di Azure AI. La chiave e l'endpoint verranno incollati nel codice riportato di seguito nell'argomento di avvio rapido.
- È possibile usare il piano tariffario gratuito (
F0
) per provare il servizio ed eseguire in un secondo momento l'aggiornamento a un livello a pagamento per la produzione.
- cURL installato
Analizzare un'immagine
Per analizzare un'immagine per varie funzionalità visive, seguire questa procedura:
Copiare il comando
curl
seguente in un editor di testo.curl.exe -H "Ocp-Apim-Subscription-Key: <subscriptionKey>" -H "Content-Type: application/json" "<endpoint>/computervision/imageanalysis:analyze?features=caption,read&model-version=latest&language=en&api-version=2024-02-01" -d "{'url':'https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png'}"
Apportare le modifiche seguenti al comando, dove necessario:
- Sostituire il valore di
<subscriptionKey>
con la chiave della risorsa Visione. - Sostituire il valore di
<endpoint>
con l'URL dell'endpoint della risorsa Visione. Ad esempio:https://YourResourceName.cognitiveservices.azure.com
. - Facoltativamente, modificare l'URL dell'immagine nel corpo della richiesta (
https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png
) nell'URL di un'altra immagine da analizzare.
- Sostituire il valore di
Aprire una finestra del prompt dei comandi.
Incollare il comando
curl
modificato dall'editor di testo nella finestra del prompt dei comandi e quindi eseguire il comando.
Esaminare i risultati
Viene restituita una risposta con esito positivo in formato JSON, simile all'esempio seguente.
{
"modelVersion": "2023-10-01",
"captionResult":
{
"text": "a man pointing at a screen",
"confidence": 0.7767987847328186
},
"metadata":
{
"width": 1038,
"height": 692
},
"readResult":
{
"blocks":
[
{
"lines":
[
{
"text": "9:35 AM",
"boundingPolygon": [{"x":131,"y":130},{"x":214,"y":130},{"x":214,"y":148},{"x":131,"y":148}],
"words": [{"text":"9:35","boundingPolygon":[{"x":132,"y":130},{"x":172,"y":131},{"x":171,"y":149},{"x":131,"y":148}],"confidence":0.977},{"text":"AM","boundingPolygon":[{"x":180,"y":131},{"x":203,"y":131},{"x":202,"y":149},{"x":180,"y":149}],"confidence":0.998}]
},
{
"text": "Conference room 154584354",
"boundingPolygon": [{"x":132,"y":153},{"x":224,"y":153},{"x":224,"y":161},{"x":132,"y":160}],
"words": [{"text":"Conference","boundingPolygon":[{"x":143,"y":153},{"x":174,"y":154},{"x":174,"y":161},{"x":143,"y":161}],"confidence":0.693},{"text":"room","boundingPolygon":[{"x":176,"y":154},{"x":188,"y":154},{"x":188,"y":161},{"x":176,"y":161}],"confidence":0.959},{"text":"154584354","boundingPolygon":[{"x":192,"y":154},{"x":224,"y":154},{"x":223,"y":161},{"x":192,"y":161}],"confidence":0.705}]
},
{
"text": ": 555-123-4567",
"boundingPolygon": [{"x":133,"y":164},{"x":183,"y":164},{"x":183,"y":170},{"x":133,"y":170}],
"words": [{"text":":","boundingPolygon":[{"x":134,"y":165},{"x":137,"y":165},{"x":136,"y":171},{"x":133,"y":171}],"confidence":0.162},{"text":"555-123-4567","boundingPolygon":[{"x":143,"y":165},{"x":182,"y":165},{"x":181,"y":171},{"x":143,"y":171}],"confidence":0.653}]
},
{
"text": "Town Hall",
"boundingPolygon": [{"x":545,"y":178},{"x":588,"y":179},{"x":588,"y":190},{"x":545,"y":190}],
"words": [{"text":"Town","boundingPolygon":[{"x":545,"y":179},{"x":569,"y":180},{"x":569,"y":190},{"x":545,"y":190}],"confidence":0.988},{"text":"Hall","boundingPolygon":[{"x":571,"y":180},{"x":589,"y":180},{"x":589,"y":190},{"x":571,"y":190}],"confidence":0.99}]
},
{
"text": "9:00 AM - 10:00 AM",
"boundingPolygon": [{"x":545,"y":191},{"x":596,"y":191},{"x":596,"y":199},{"x":545,"y":198}],
"words": [{"text":"9:00","boundingPolygon":[{"x":546,"y":191},{"x":556,"y":192},{"x":556,"y":199},{"x":546,"y":199}],"confidence":0.758},{"text":"AM","boundingPolygon":[{"x":558,"y":192},{"x":565,"y":192},{"x":564,"y":199},{"x":558,"y":199}],"confidence":0.989},{"text":"-","boundingPolygon":[{"x":567,"y":192},{"x":570,"y":192},{"x":569,"y":199},{"x":567,"y":199}],"confidence":0.896},{"text":"10:00","boundingPolygon":[{"x":571,"y":192},{"x":585,"y":192},{"x":585,"y":199},{"x":571,"y":199}],"confidence":0.797},{"text":"AM","boundingPolygon":[{"x":587,"y":192},{"x":594,"y":193},{"x":593,"y":199},{"x":586,"y":199}],"confidence":0.994}]
},
{
"text": "Aaron Blaion",
"boundingPolygon": [{"x":542,"y":201},{"x":581,"y":201},{"x":581,"y":207},{"x":542,"y":207}],
"words": [{"text":"Aaron","boundingPolygon":[{"x":545,"y":201},{"x":560,"y":202},{"x":560,"y":208},{"x":545,"y":208}],"confidence":0.718},{"text":"Blaion","boundingPolygon":[{"x":562,"y":202},{"x":579,"y":202},{"x":579,"y":207},{"x":562,"y":207}],"confidence":0.274}]
},
{
"text": "Daily SCRUM",
"boundingPolygon": [{"x":537,"y":258},{"x":574,"y":259},{"x":574,"y":266},{"x":537,"y":265}],
"words": [{"text":"Daily","boundingPolygon":[{"x":538,"y":259},{"x":551,"y":259},{"x":551,"y":266},{"x":538,"y":265}],"confidence":0.404},{"text":"SCRUM","boundingPolygon":[{"x":553,"y":259},{"x":570,"y":260},{"x":570,"y":265},{"x":553,"y":266}],"confidence":0.697}]
},
{
"text": "10:00 AM-11:00 AM",
"boundingPolygon": [{"x":535,"y":266},{"x":589,"y":265},{"x":589,"y":272},{"x":535,"y":273}],
"words": [{"text":"10:00","boundingPolygon":[{"x":539,"y":267},{"x":553,"y":266},{"x":552,"y":273},{"x":539,"y":274}],"confidence":0.219},{"text":"AM-11:00","boundingPolygon":[{"x":554,"y":266},{"x":578,"y":266},{"x":578,"y":272},{"x":554,"y":273}],"confidence":0.175},{"text":"AM","boundingPolygon":[{"x":580,"y":266},{"x":587,"y":266},{"x":586,"y":272},{"x":580,"y":272}],"confidence":1}]
},
{
"text": "Charlene de Crum",
"boundingPolygon": [{"x":538,"y":272},{"x":588,"y":273},{"x":588,"y":279},{"x":538,"y":279}],
"words": [{"text":"Charlene","boundingPolygon":[{"x":538,"y":273},{"x":562,"y":273},{"x":562,"y":280},{"x":538,"y":280}],"confidence":0.322},{"text":"de","boundingPolygon":[{"x":563,"y":273},{"x":569,"y":273},{"x":569,"y":280},{"x":563,"y":280}],"confidence":0.91},{"text":"Crum","boundingPolygon":[{"x":570,"y":273},{"x":582,"y":273},{"x":583,"y":280},{"x":571,"y":280}],"confidence":0.871}]
},
{
"text": "Quarterly NI Handa",
"boundingPolygon": [{"x":537,"y":295},{"x":588,"y":295},{"x":588,"y":302},{"x":537,"y":302}],
"words": [{"text":"Quarterly","boundingPolygon":[{"x":539,"y":296},{"x":563,"y":296},{"x":563,"y":302},{"x":538,"y":302}],"confidence":0.603},{"text":"NI","boundingPolygon":[{"x":564,"y":296},{"x":570,"y":296},{"x":571,"y":302},{"x":564,"y":302}],"confidence":0.73},{"text":"Handa","boundingPolygon":[{"x":572,"y":296},{"x":588,"y":296},{"x":588,"y":302},{"x":572,"y":302}],"confidence":0.905}]
},
{
"text": "11.00 AM-12:00 PM",
"boundingPolygon": [{"x":538,"y":303},{"x":587,"y":303},{"x":587,"y":309},{"x":538,"y":309}],
"words": [{"text":"11.00","boundingPolygon":[{"x":539,"y":303},{"x":552,"y":303},{"x":553,"y":309},{"x":539,"y":310}],"confidence":0.671},{"text":"AM-12:00","boundingPolygon":[{"x":554,"y":303},{"x":578,"y":303},{"x":578,"y":309},{"x":554,"y":309}],"confidence":0.656},{"text":"PM","boundingPolygon":[{"x":579,"y":303},{"x":586,"y":303},{"x":586,"y":309},{"x":580,"y":309}],"confidence":0.454}]
},
{
"text": "Bobek Shemar",
"boundingPolygon": [{"x":538,"y":310},{"x":577,"y":310},{"x":577,"y":316},{"x":538,"y":316}],
"words": [{"text":"Bobek","boundingPolygon":[{"x":539,"y":310},{"x":554,"y":311},{"x":554,"y":317},{"x":539,"y":317}],"confidence":0.632},{"text":"Shemar","boundingPolygon":[{"x":556,"y":311},{"x":576,"y":311},{"x":577,"y":317},{"x":556,"y":317}],"confidence":0.219}]
},
{
"text": "Weekly aband up",
"boundingPolygon": [{"x":538,"y":332},{"x":583,"y":333},{"x":583,"y":339},{"x":538,"y":338}],
"words": [{"text":"Weekly","boundingPolygon":[{"x":539,"y":333},{"x":557,"y":333},{"x":557,"y":339},{"x":539,"y":339}],"confidence":0.575},{"text":"aband","boundingPolygon":[{"x":558,"y":334},{"x":573,"y":334},{"x":573,"y":339},{"x":558,"y":339}],"confidence":0.475},{"text":"up","boundingPolygon":[{"x":574,"y":334},{"x":580,"y":334},{"x":580,"y":339},{"x":574,"y":339}],"confidence":0.865}]
},
{
"text": "12:00 PM-1:00 PM",
"boundingPolygon": [{"x":538,"y":339},{"x":585,"y":339},{"x":585,"y":346},{"x":538,"y":346}],
"words": [{"text":"12:00","boundingPolygon":[{"x":539,"y":339},{"x":553,"y":340},{"x":553,"y":347},{"x":539,"y":346}],"confidence":0.709},{"text":"PM-1:00","boundingPolygon":[{"x":554,"y":340},{"x":575,"y":340},{"x":575,"y":346},{"x":554,"y":347}],"confidence":0.908},{"text":"PM","boundingPolygon":[{"x":576,"y":340},{"x":583,"y":340},{"x":583,"y":346},{"x":576,"y":346}],"confidence":0.998}]
},
{
"text": "Danielle MarchTe",
"boundingPolygon": [{"x":538,"y":346},{"x":583,"y":346},{"x":583,"y":352},{"x":538,"y":352}],
"words": [{"text":"Danielle","boundingPolygon":[{"x":539,"y":347},{"x":559,"y":347},{"x":559,"y":352},{"x":539,"y":353}],"confidence":0.196},{"text":"MarchTe","boundingPolygon":[{"x":560,"y":347},{"x":582,"y":347},{"x":582,"y":352},{"x":560,"y":352}],"confidence":0.571}]
},
{
"text": "Product reviret",
"boundingPolygon": [{"x":537,"y":370},{"x":578,"y":370},{"x":578,"y":375},{"x":537,"y":375}],
"words": [{"text":"Product","boundingPolygon":[{"x":539,"y":370},{"x":559,"y":370},{"x":559,"y":376},{"x":539,"y":375}],"confidence":0.7},{"text":"reviret","boundingPolygon":[{"x":560,"y":370},{"x":578,"y":371},{"x":578,"y":375},{"x":560,"y":376}],"confidence":0.218}]
}
]
}
]
}
}
Passaggi successivi
In questa guida introduttiva si è appreso come effettuare chiamate di analisi delle immagini di base usando l'API REST. Altre informazioni sulle funzionalità dell'API Analizza 4.0.
Prerequisiti
- Accedere a Vision Studio tramite la sottoscrizione di Azure e la risorsa Servizi di Azure AI. Per ricevere assistenza per questo passaggio, vedere la Sezione Attività iniziali della panoramica.
Analizzare un'immagine
- Selezionare la scheda Analizza immagini e selezionare il pannello Estrai tag comuni dalle immagini.
- Per usare l'esperienza di prova, sarà necessario scegliere una risorsa e confermare che essa prevede l'uso in base al piano tariffario.
- Selezionare un'immagine dal set disponibile o caricarne una a propria scelta.
- Dopo aver selezionato l'immagine, i tag rilevati verranno visualizzati nella finestra di output insieme ai relativi punteggi di attendibilità. È anche possibile selezionare la scheda JSON per visualizzare l'output JSON restituito dalla chiamata API.
- Sotto all’esperienza try-it-out sono riportati i passaggi successivi per iniziare a utilizzare questa funzionalità nella propria applicazione.
Passaggi successivi
In questa guida introduttiva si è usato Vision Studio per eseguire un'attività di analisi delle immagini di base. Altre informazioni sulle funzionalità dell'API Analizza immagine.